• Title/Summary/Keyword: Lifting design

Search Result 301, Processing Time 0.022 seconds

Design and strength analysis of lifting lugs (Lifting lug의 설계 절차 및 강도해석 방법에 대한 고찰)

  • Seo, Sun-Kee;Kim, Kyung-Rae;Eom, Sung-Sub;Seo, Yong-Seok
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.51-54
    • /
    • 2011
  • This paper presents methods for design and strength analysis of lifting lugs utilized in assembling, erection, and turning over of ship structures. Lifting lugs are designed in accordance with ASME BTH-1-2008; Design of Below-the-Hook Lifting Devices. Experimental tests for fillet welded joints were conducted to design weld size of lifting lugs and under-structures. The nonlinear finite element method, using MSC.Marc software, is employed for limit state assessment of lifting lugs in static loading conditions. The analysis considers nonlinearities in material properties and contact between lifting lug and pin.

  • PDF

Development of Design Program for Arm-Type Lift of Truck (화물차 차량부착용 암형 리프트 설계 프로그램의 개발)

  • 박상신;안유민;김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.244-252
    • /
    • 1997
  • In this paper, arm-type lifting mechanism which is attached under the frame of truck is analyzed. The three types of motions which are divided into rotation, pure lifting and automatic tilting motions are analyzed kinematically. These motions are visualized by computer graphics using Visual Basic. This program will be used for designer to demonstrate the arm-type lifting mechanism before making real machines. Also this program can change design parameter interactively.

  • PDF

Development of the Design System for the Lifting Lug Structure (탑재용 러그 구조의 설계 시스템 개발)

  • 함주혁
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.189-194
    • /
    • 2000
  • Due to the rapid growth of ship building industry and increment of ship construction in Korea, several hundred thousand of lifting lugs per year, have been installed at the lifting positions of ship block and removed after finishing their function, therefore, appropriate design system for strength check or optimal design of each lug structure has been required in order to increase the capability of efficient design. In this study, design system of D-type lifting lug structure which is most popular and useful in shipyards, was developed for the purpose of initial design of lug structure. Developed system layout and graphic user interface for this design system based on the C++ language were explained step by step. Using this design system, more efficient performance of lug structural design will be expected on the windows of personal computer.

  • PDF

A Parametric Study on Design Variables of Lifting Chamber Using Numerical Simulation (수치해석을 이용한 부양실 설계변수에 관한 연구)

  • Jeon, Chang-Soo
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.52-64
    • /
    • 1998
  • Numerical simulations on the flowfield of lifting chamber for Wing-In-Ground vehicle were performed using Fluent/UNS 4.2 software. The trend of lifting force in lifting chamber and parametric study of geometric and fluid variables were primarily investigated. Selected parameters for investigation are inlet velocity, height between chamber and water level, depth of the skirt, location of inlet, variaton of height at bow and stern. Also, air capturing capabilities from downstream of the propeller were evaluated at the air inlet. The lifting force was increased linearly with the increased of inlet velocity and nonlinearly with the decrease of height force was increased with increased depth. It turned out to have very minor effect on lifting force to change the location of air inlet for lifting chamber, installed on top surface. Tilting the vehicle when it was lifted, the lifting forces, generated in each case, showed no appreciable changes.

  • PDF

The Study of the Influence of Intra-Abdominal Pressure to Manual Materials Handling

  • Woo, Tsun-Yu
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.90-98
    • /
    • 2008
  • This research selects the lifting task to be the main subject. Four experiments were designed to measure which among lifting postures, lifting heights, waist-belt, and breathing control significantly influences intra-abdominal pressure (Gallagher, 1991; Lavender, Andersson and Natarajan, 1999). The experimental results were taken to be the recommendations of the manual materials handling work design. The research findings reveal that the symmetrical stoop posture is the most significant to the intra-abdominal pressure within all lifting postures. When the lifting height is increased, the intra-abdominal pressure produced relatively goes up. Also, the combination of symmetrical stoop posture, waist-belt use, and inspiration and holding at the same time is the most efficient in carrying out lifting tasks. Simultaneously, the research discovers that for any posture, the volume of the intra-abdominal pressure is much bigger when using the waist-belt compared to when it is not used. Therefore, the waist-belt design for the lifting works might be the future research approach.

A Study for Rationalization of Lifting Lug Design of Ship Block (선박블록 탑재용 러그구조의 설계합리화를 위한 연구)

  • 함주혁
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.249-261
    • /
    • 1997
  • A basic study on the lifting lug design has performed through the rational and systematic process. In order to evaluate the proper design-load distribution around lug eye investigation of contact force between lifting lug and shackle pin is performed using non-linear parametric analysis idealized by gap element models. Gap element modeling and nonlinear analysis procedures are illustrated and discussed based on MSC/NASTRAN. Some analysis and design guides are suggested through the consideration of several important effects such as stress distribution pattern, circumferential contact force distribution along the lug eye face, loading share rate between lug main plate and doubler, effect of loading direction, relation between applied force and deflection and size effect of shackle pin radius. Additionally optimum design studies are performed and general trends according to the variation of design parameters are suggested.

  • PDF

On the Preliminary Design of Marine Propellers by Lifting Line Theory (양력선(揚力線) 이론(理論)에 의한 추진기(推進器) 초기설계(初期設計)에 대하여)

  • Jin-Tae,Lee;Zae-Geun,Kim;Chang-Sup,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.17 no.3
    • /
    • pp.5-17
    • /
    • 1980
  • A basic procedure to design marine propellers by a curved lifting line theory was shown. By adapting discrete singularity method, it became possible to take into account of skew, rake and the contraction of slip stream in the early stage of preliminary design procedure. It is also shown that lifting line theory based on the discrete singularity method converges to a common solution obtained by induction factor method with a relatively small number of discrete elements. Lifting the blade geometry more accurately on the basis of hydrodynamic principles. A number of numerical results from lifting line calculation are presented for the purpose of comparison with the previous method, and with these results two sample designs are carried out, which are wake-adapted optimum and wake-adapted non-optimum propellers.

  • PDF

A Study on the Optimization of Lifting Lug for Block Erection (선박 블럭 탑재용 러그 구조 최적화 연구)

  • Min, Dug-Ki;Eum, Sung-Min
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2011.09a
    • /
    • pp.82-89
    • /
    • 2011
  • In general, a number of lifting lugs have been used in shipbuilding industry and the D-type lugs are mainly used. The aim of this paper is to increase the cycle of the use and to reduce the size of lifting lugs to introduce lightweight shackle. In this study, nonlinear elasto-plastic analysis has been performed to confirm the ultimate strength of lifting lugs. In order to evaluate the proper design-load distribution around lug eye, the contact force between lifting lug and shackle pin has been realized by gab element model. Gap element modeling and nonlinear analysis are carried out using the finite element program MSC/PATRAN & ABQUS. Additionally the ultimate strength tests were performed to verify the structural adequacy of newly designed lifting lug and to insure safety of it. The D-10, 15, 20 & 40 ton models which are mainly used in the block erection are selected in the strength test. According to the results of the analysis and strength test, the ultimate strength of the newly designed lifting lugs has been estimated to exceed 3 times of design working load.

  • PDF

Parametric Design Considerations for Lifting Lug Structure on Ship Block (선박블록 탑재용 러그구조의 파라메트릭 설계 고찰)

  • Ham, Juh-Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

Optimal Block Lifting Scheduling Considering the Minimization of Travel Distance at an Idle State and Wire Replacement of a Goliath Crane (골리앗 크레인의 공주행 거리와 와이어 교체 최소를 고려한 최적 블록 리프팅 계획)

  • Roh, Myung-Il;Lee, Kyu-Yeul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Recently, a shipyard is making every effort to efficiently manage equipments of resources such as a gantry crane, transporter, and so on. So far block lifting scheduling of a gantry crane has been manually performed by a manager of the shipyard, and thus it took much time to get scheduling results and moreover the quality of them was not optimal. To improve this, a block lifting scheduling system of the gantry crane using optimization techniques was developed in this study. First, a block lifting scheduling problem was mathematically formulated as a multi-objective optimization problem, considering the minimization of travel distance at an idle state and wire replacement during block lifting. Then, to solve the problem, a meta-heuristic optimization algorithm based on the genetic algorithm was proposed. To evaluate the efficiency and applicability of the developed system, it was applied to an actual block lifting scheduling problem of the shipyard. The result shows that blocks can be efficiently lifted by the gantry crane using the developed system, compared to manual scheduling by a manager.