• Title/Summary/Keyword: Lifting Model

Search Result 168, Processing Time 0.028 seconds

Development of the Model Using Queueing Theory for Lifting Planning in Tall Buildings (큐잉이론을 이용한 고층건물 가설리프트 계획모델 구축에 관한 연구)

  • Lee, Hak-Ju;Kim, Dae-Won;Cho, Hun-Hee;Kang, Kyung-In
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2008.11a
    • /
    • pp.628-633
    • /
    • 2008
  • Tall building construction has been increasing due to the need to maximize land usage. It causes the increase of vertical transportation for workers and materials, which significantly affects the productivity and lifting planning, therefore, has to be made carefully based on the characteristics of the field. However, the existing method to calculate the number of lift is too simple to consider complex and various characteristics in tall building construction. Accordingly, we developed the model for selecting the best system of vertical transportation by using Queueing theory. To find out the situation of the queue of resources such as material and workers, a simulation program will be applied.

  • PDF

Study on the Application of Decentralized Control Method for Simplified Model of Deep Seabed Mining System (심해저 채광시스템의 단순 모델에 대한 분산 제어 기법 적용성 연구)

  • YEU TAE-KYEONG;HONG SUP;KIM HYUNG-Woo;CHOI JONG-SU
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.73-78
    • /
    • 2004
  • The deep seabed mining system is generally composed of surface vessel, lifting system, buffer, flexible pipe and miner. The milling system is regarded as a large-scale system in which each subsystem is interconnected to other one. In order to control a large-scale system, a decentralized control approaches have been proposed recently. In this paper, as a basic study on application of decentralized control, firstly, the mining system is simplified modeled, where the lifting system and buffer is regarded as a spherical pendulum and tile flexible pipe is as a two-dimension linear spring. Based on the derived model, the system characteristics and the feasibility of decentralized control are analyzed.

  • PDF

The Design, Fabrication, and Characteristic Experiment of Electromagnet to Control Element Drive Mechanism in System-Integrated Modular Advanced Reactor (일체형원자로 제어봉구동장치에 장착되는 전자석의 설계 및 특성해석)

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.147-153
    • /
    • 2003
  • This paper describes the finite element analysis(FEA) for the design of electromagnet for Control Element Drive Mechanism(CEDM) in System-integrated Modular Advanced Reactor(SMART) and compared with the lifting power characteristics of prototype electromagnet. A thermal analysis was performed for the electromagnet. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation. since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. As a result, it is shown that the characteristics of prototype electromagnet have a good agreement with the results of FEA. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

Form-finding of lifting self-forming GFRP elastic gridshells based on machine learning interpretability methods

  • Soheila, Kookalani;Sandy, Nyunn;Sheng, Xiang
    • Structural Engineering and Mechanics
    • /
    • v.84 no.5
    • /
    • pp.605-618
    • /
    • 2022
  • Glass fiber reinforced polymer (GFRP) elastic gridshells consist of long continuous GFRP tubes that form elastic deformations. In this paper, a method for the form-finding of gridshell structures is presented based on the interpretable machine learning (ML) approaches. A comparative study is conducted on several ML algorithms, including support vector regression (SVR), K-nearest neighbors (KNN), decision tree (DT), random forest (RF), AdaBoost, XGBoost, category boosting (CatBoost), and light gradient boosting machine (LightGBM). A numerical example is presented using a standard double-hump gridshell considering two characteristics of deformation as objective functions. The combination of the grid search approach and k-fold cross-validation (CV) is implemented for fine-tuning the parameters of ML models. The results of the comparative study indicate that the LightGBM model presents the highest prediction accuracy. Finally, interpretable ML approaches, including Shapely additive explanations (SHAP), partial dependence plot (PDP), and accumulated local effects (ALE), are applied to explain the predictions of the ML model since it is essential to understand the effect of various values of input parameters on objective functions. As a result of interpretability approaches, an optimum gridshell structure is obtained and new opportunities are verified for form-finding investigation of GFRP elastic gridshells during lifting construction.

Design of a Decentralized Controller for Deep-sea Mining System (심해저 채광시스템에 대한 분산제어기 설계에 관한 연구)

  • Yeu, Tae-Kyeong;Park, Soung-Jea;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.3
    • /
    • pp.252-259
    • /
    • 2008
  • The deep-sea mining system is generally composed of surface vessel, lifting system, buffer, flexible pipe and miner. The mining system can be regarded as a large-scale system in which each subsystem is interconnected to other ones. In order to control a large-scale system, decentralized control approaches have been proposed recently. In this paper, as a basic study on application of decentralized control, firstly, the mining system was modeled in a simplified way. Lifting system and buffer were regarded as a spherical pendulum and the flexible pipe was taken as a two-dimensional linear spring connection. Based on the simplified model dynamics, the mining system can be decentralized two subsystems, the one consisting of surface vessel, lifting system and buffer, and the other, the miner. Next, this paper proposed the design of controller for each decentralized subsystem by regarding the interacting terms as disturbances. The controllers kept the constant distance between two subsystems during the miner was moving on the specified track. Finally, the efficiency of proposed controller was proven through the numerical simulation of the derived model.

On the Lift Enhancement Technique of the Trailing Edge Rotor of Two Dimensional Hydrofoil (날개 끝 회전자를 이용한 양력강화기법에 관한 연구)

  • Oh, Jung-Keun;Noh, Jackyou
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.200-206
    • /
    • 2015
  • In order to verify the lift enhancement of the 2D hydrofoil with trailing edge rotor and check the ability of its practical use, experimental studies were conducted in the caviation tunnel using the test model with NACA0020 section. The three-component forces acting on the model could be measured by exclusively designed sting type multi-component load cell. The trailing edge of the model has been replaced with rotor which could be controlled by DC servo motor installed at the exterior of the tunnel. A typical effect of the trailing edge rotor has been introduced among the systematic experiments on various angular deviation of the model and the rotational velocity of the trailing edge rotor. It is appeared that the circulation control effect could be easily adjusted by selecting the rotational velocity of the trailing edge rotor and the lift force was augmented more than two times. Thus the proposed lifting device could be utilized as a novel high lifting device which has adjustability of lift force.

The Use of Rasch Model in Developing a Short Form Based on Self-Reported Activity Measure for Low Back Pain

  • Choi, Bong-Sam
    • Physical Therapy Korea
    • /
    • v.21 no.4
    • /
    • pp.56-66
    • /
    • 2014
  • For maintaining adequate psychometric properties when reducing the number of items from an instrument, item level psychometrics is crucial. Strategies such as low item correlation or factor loadings, using classical test theory, have traditionally been advocated. The purpose of this study is to describe the development of a new short form assessing the impact of low back pain on physical activity. Rasch measurement model has been applied to the International Classification of Functioning, Disability and Health Activity Measure (ICF-AM). One hundred and one individuals with low back pain aged 19-89 years (mean age: $48.1{\pm}17.3$) who live in the community were participated in the study. Twenty-seven items of lifting/carrying construct of the ICF-AM were analyzed. Ten items were selected from the construct to create a short form. Item elimination criteria include: 1) high or low mean square (out of the range: .6-1.4 for the fit statistics), 2) similar item calibrations to adjacent items, 3) person separation value, and item-person map for potential gap in person ability continuum. All 10 items of the short form fit to the Rasch model except one item (i.e., carrying toddler on back). Despite its high infit and outfit statistics (1.90/2.17), the item had to be reinstated due to potential gaps at the upper extreme of person ability level. The short form had a slightly better spread of person ability continuum compared to the entire set of item. The created short form separated individuals with low back pain into nearly 4 groups, while the entire set of items separated the individuals into 6 groups. The findings prompted multidimensional models for better explanation of the lifting/carrying domain. The item level psychometrics based on the Rasch model can be useful in developing short forms with rationally retained items.

Modeling the Multi-Dimensional Phenomenon of Fatiguing by Assessing the Perceived Whole Body Fatigue and Local Muscle Fatigue During Squat Lifting (무릎들기 작업 시 전신피로 감지 수준과 근육 피로도를 활용한 다면적 피로현상 모델링)

  • Ahmad, Imran;Kim, Jung-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.1-8
    • /
    • 2018
  • Whole body fatigue detection is an important phenomenon and the factors contributing to whole body fatigue can be controlled if a mathematical model is available for its assessment. This research study aims at developing a model that categorizes whole body exertion into fatigued and non-fatigued states based on physiological and perceived variables. For this purpose, logistic regression was used to categorize the fatigued and non-fatigued subject as dichotomous variable. Normalized mean power frequency of eight muscles from 25 subjects was taken as physiological variable along with the heart rate while Borg scale ratings were taken as perceived variables. The logit function was used to develop the logistic regression model. The coefficients of all the variables were found and significance level was checked. The detection accuracy of the model for fatigued and non-fatigues subjects was 83% and 95% respectively. It was observed that the mean power frequency of anterior deltoid and the Borg scale ratings of upper and lower extremities were significant in predicting the whole body fatigued when evaluated dichotomously (p < 0.05). The findings can help in better understanding of the importance of combined physiological and perceived exertion in designing the rest breaks for workers involved in squat lifting tasks in industrial as well as health sectors.

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.232-244
    • /
    • 2023
  • The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.