• Title/Summary/Keyword: Lifting Equipment

Search Result 87, Processing Time 0.024 seconds

An Analysis of The Critical Risk Factors in Failure Cases of Lifting Equipment Plans in High-rise Construction Project (초고층 프로젝트 양중 계획의 실패 유형별 핵심 리스크 요인 분석)

  • Kim, Nam-Gyun;Kim, Yea-Sang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.73-83
    • /
    • 2013
  • Recently, not only around Korea but also other countries shows a pattern of arising high-rise building construction project which was delayed or aborted during global economic crises and recession. Although the market starts to stretch, It is getting competitive to win a contract in high-rise construction project between contractors due to lack of competitive advantage especially to Korea contractors. To get that, Korean contractors needs lifting equipment plan. But currently, they depend on the empirical methods and that cause schedule delay, not controlled cost management problem. Therefore, this research is to improve the accuracy of Lifting plan by analyzing the current issues of Lifting plan system and deducing the types of failures with planning factors, as well as analyzing the impact on schedule and cost control and safety management by each failure mode. Also, by analyzing detail risk factors per Lifting Equipment with FMEA, to infer the critical risk factor on high-rise construction project.

OPTIMIZATION ALGORITHM FOR AUTOMATIC LAYOUT OF TOWER CRANES

  • Dong-Hoon Lee;Hyun-Min Lee;Jin-Kyu Joo;Sun-Kuk Kim
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1060-1067
    • /
    • 2009
  • The selection and operation of tower cranes at construction sites are dependent on the personal experience of engineers in charge of lifting work. It often causes to overestimate the safety factor resulting in increase of construction cost, or underestimate it resulting in disastrous accident. Therefore, selection of tower cranes needs to consider cost, safety and maximum lifting condition. This study, for resolving such problems, was intended to propose the algorithm designed for even the inexperienced person to select the optimal lifting equipment in timely manner. The algorithm presented herein is an optimization algorithm that enables automatic arrangement of tower crane and minimization of costs by analyzing such conditions as vertical height and lifting load, etc.

  • PDF

Development of an Automation Library in Multi-Body Dynamics Program for Dynamic Structural Analysis of Block Lifting Process (블록의 리프팅 동적 구조해석을 위한 다물체 동역학 프로그램의 내장형 자동화 라이브러리 개발)

  • Jung, Da-un;Cha, Ju-Hwan;Song, Chang-Yong;Lee, Chung-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.2
    • /
    • pp.135-143
    • /
    • 2016
  • In this study, an embedded system composed of equipment setting, block importing, scenario setting and output reporting is developed in multi-body dynamics program, ADAMS, for conducting dynamic structural analysis of block lifting process. First, equipment used for block lifting process is set in the simulation environment and the shapes and functions of two lifting beams, and six block loaders are provided as the equipment. Second, the modal analysis result of the lifting block is imported from the static structural analysis system, NASTRAN. Third, the lifting scenarios, such as hoisting, waiting, trolley moving, and wire connecting, are set in the system. Finally, output results in the forms of plots, texts and tables, are reported after the dynamic structural analysis. The test examples conducted in a shipyard are applied into the developed system in various condition and scenarios. The loads at the lug points, the stress contours, and the hot spot tables of the developed system are compared with the result of the static analysis system.

Economic Alternative for Volumetric Module Lifting/Offloading (볼류메트릭 모듈 양중 및 인양 대안에 관한 연구)

  • Song, Seung-Ho;Kwon, Woo-Bin;Choi, Jin-Ouk;Cho, Hun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.75-76
    • /
    • 2023
  • The construction industry's lack of experience and expertise makes it difficult for projects to realize the full benefits of implementing modular construction. Such project performance-hindering elements are often labeled as modular challenges. The added requirement for the transportation of the finished volumetric module is one aspect of the 'module transportation logistics,' the under-researched modular challenge that can prevent projects from incurring maximum cost and productivity benefits. The typical module transportation phases include lifting, transporting, and offloading. From conducting a literature review, this paper aims to investigate the equipment commonly adopted to lift and offload the module and validate its economic efficiency by comparing it with the alternative lifting/offloading equipment used in the two case projects. The results showed that hydraulic jacks are an economic alternative to the crane for lifting/offloading the module. The increase in single-module projects with smaller budgets made crane usage economically undesirable, and this study suggested a viable option for a more economical alternative.

  • PDF

An Analysis on the Safety Accident Network and Risk Level of Construction Machine and Equipment (건설기계·장비의 안전재해 네트워크 및 위험도 분석)

  • Shin, Won-Sang;Son, Chang-Baek
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.5
    • /
    • pp.35-42
    • /
    • 2018
  • In order to seek out methods to reduce safety accidents caused by construction machinery and equipment, this study collects data about safety accidents and draws main risk factors by construction from the data, through SNA. It aimed to suggest safety management points to be used in future construction fields, by analyzing risk index of such factors. The finding can be summarized: First, Backhoe Bucket is the risk factor for crash accidents of average workers in earth works; boring machines-maintenance is the risk factor for fall accidents of construction machinery operators in foundation works; bending machine-reinforcing rod processing is the risk factor for jamming accidents of reinforcing rod engineers in frame works; and mobile crane-hook is the risk factor for crash accidents of average workers in lifting works. Second, works can be arranged in turn, according to the risk index: earth, lifting, frame and foundation works. Risk factors can be also arranged according to the risk index: Backhoe in earth works, pile drivers in foundation works, bending machines in frame works and mobile cranes in lifting works. This study has some limits, in that it only analyzed main machinery/equipment, among various kinds of them, for earth, foundation, frame and temporary works (lifting works) and used data collected over three years. Therefore, it is necessary to conduct an analysis using big data, by collecting additional data about a lot of machinery/equipment in future construction fields.

A Study on the Process of Tower Crane Construction Planning in Steel Structure (철골공사에서의 타워크레인 양중계획 프로세스에 관한 연구)

  • Jung, Deok-Gi;Park, Jung-Lo;Kim, Ju-Hyung;Kim, Jae-Jun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.145-146
    • /
    • 2011
  • Lifting plan in conjunction with the overall construction plan will be established. It is being created by executive director of the Corporation and other such as an experienced site manager. But, written lifting plan based on the limited information and experience is causing some problems such as decreasing productivity, workability loss, delay. The reasons for the problems are lack of prediction of construction execution, inappropriate materials on the past performance, individual experience, limits of knowledge, lack of technical materials, shortage of advisor. Therefore, to solve the problems, we have to overcome the situation in which we depends on lifting planner's experience and intuition, limited information by accumulating objective and reliable materials. Because unorganized lifting plan will lower efficiency of lifting equipment and make reducing construction period difficult. In this study, influence factors on lifting plans will be derived through reviewing literatures and lifting plan cases. Derived influence factors will be classified as components and classes, classified influence factors are assessed suitability. Also, Decision making items are derived from the factors. Finally, tower crane lifting plan process will be suggested from the result.

  • PDF

Comparative Analysis of Lifting Loads of Tower Cranes by Core Structure Construction Methods

  • Choi, Yong Seok;Kim, Taehoon;Kim, Sangdae
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.301-306
    • /
    • 2020
  • In tall building construction, the appropriate control of lifting loads on tower cranes is critical in terms of the construction duration of structural works. The adoption of efficient construction methods can be the most effective way of minimizing the inputs of tower cranes and making a lifting plan and management easier. Based on actual data from a tall building project, this study comparatively analyzes lifting loads of tower cranes by the core structure preceding construction method (CSPCM) and the core structure succeeding construction method (CSSCM). The results revealed that the CSSCM could reduce up to about 56.3% of lifting loads for core works and significantly enhance lifting efficiency compared with the CSPCM. Consequently, this enabled a substantial reduction in the construction duration of structural works. This study provides a practical reference to assist engineers and managers in applying efficient construction methods and lifting equipment operation in tall building projects.

A Study on the Estimation of Proper Numbers of Construction Lifts (건설 리프트의 적정 대수 산정에 관한 연구)

  • Kim, Sun-Kuk;Han, Kap-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.3
    • /
    • pp.119-125
    • /
    • 2008
  • The volume of material and number of workers mobilized has been on the rise in line with the domestic projects getting higher, larger and complex currently. Particularly for the project in downtown, delivering the resources in timely manner is very crucial in carrying out the overall project as scheduled. Inappropriate lifting plan often causes inefficiency over the entire project, resulting in increase in schedule and cost. Despite of such importance of lifting plan for architectural work, lifting plans at the most of domestic projects, except a few cases for large scale high-rise buildings, have been heavily dependent on engineer's personal experience and intuition alone. To deal with such problems, the study was intended to develop and suggest a systematic and objective process for determining the lift, categorizing the lifting equipment into the two types, one for workers and another for material.

The Fundamental Research on Lifting-Work for Excavator Safety Management (굴삭기 안전 관리를 위한 인양작업에 관한 기초연구)

  • Lee, Yongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6D
    • /
    • pp.811-818
    • /
    • 2011
  • Though an excavator is classified as an equipment utilizing a shovel in earthworks, it has been frequently used in lifting work. In this view, lifting capacity is classified as the main functions of the excavator. Thus, its accurate functions need to be provided. However, in domestic conditions, the necessity for the functions of lifting capacity are not perceived. This study shows 1) Many researches about lifting-work of excavators abroad are used as basic data necessary for domestic introduction. 2) For domestic excavators without the information of lifting-work, methodologies of lifting-work available are suggested and reviewed. 3)Lifting zones are divided into safety and caution lifting zones. The information on lifting capacity and lifting zones will be able to used as objective and substantive bases to operational planning and safety management.