• Title/Summary/Keyword: Lift characteristics

Search Result 816, Processing Time 0.026 seconds

Favorable Condition for Mycelial Growth of Tricholoma matsutake (송이균 배양을 위한 균사생장 조건)

  • Kim, In-Yeup;Jung, Gwang-Reul;Han, Sang-Kuk;Cha, Joo-Young;Sung, Jae-Mo
    • The Korean Journal of Mycology
    • /
    • v.33 no.1
    • /
    • pp.22-29
    • /
    • 2005
  • The main objectives of this research were to study the cultural and nutritional characteristics of Tricholoma matsutake and to establish its liquid culture system. The optimum growth of T. matsutake was observed in HA and TMM agar media. Similarly highest growth was observed in PDB and TMM liquid media. The optimal temperature for the mycelial growth was $25^{\circ}C$. The most suitable carbon source was dextrin among 12 different carbon sources tested. Yeast extract and peptone were best nitrogen sources among 17 different sources tested. The optimum mineral salts were $Fe_{2}(SO_{4})_{3}{\cdot}H_{2}O$ and KCl among 9 different sources tested. Shaking culture gave higher mycelial growth compared to stationary culture. Similarly, optimum medium amount for shaking culture was 100 ml per 250 ml flask. The highest mycelial growth was obtained when $5{\sim}7$ mycelial discs were inoculated in 100 ml of medium and incubated for $8{\sim}9$ weeks, respectively. The highest proportion of mycelial growth was observed at 40 : 1 ratio of medium to inoculum volume in 8 l air-lift fermenter.

Production of Mycelia and Water Soluble Polysaccharides from Submerged Culture of Ganoderma applanatum Using Different Types of Bioreactor (생물반응기 유형에 따른 잔나비불로초(Ganoderma applanatum)의 균사체 및 수용성 다당체 생산 특성)

  • Lee, Wi-Young;Park, Young-Ki;Ahn, Jin-Kwon;Park, So-Young
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2006
  • In order to select a suitable bioreactor type for the submerged cultivation of Ganoderma applanatum, both growth characteristics and polysaccharides production were compared among four different types of bioreactor. These include an external-loop type air-lift bioreactor (ETAB), a balloon type air bubble bioreactor (BTBB), a column type air bubble bioreactor (CTBB) and a stirrer type bioreactor (STB). The mycelial biomass produced from the reactors were in decreasing order: ETAB ($7\;g/{\ell}$) > BTBB ($6.2\;g/{\ell}$) > STB ($6\;g/{\ell}$) > CTBB ($5\;g/{\ell}$). Maximal soluble exopolysaccharides ($1\;g/{\ell}$) and endopolysaccharides (2.7%) were also obtained from ETAB. Thus, the ETAB was most suitable for submerged culture of G applanatum mycelium. Based on the results, ETAB was chosen for further detailed study. The most effective aeration rate for the mycelial growth in ETAB ranged from 0.05 to 0.1 vvm. For the maximal production, the mycelium at the initial growth stage needed low aeration rate to reduce cell damages by fluid flow. However, as the mycelia grew, the culture became viscous and thus needed higher aeration. The molecular weight of exopolysaccharides obtained from the culture grown in ETAB was higher than that from the culture grown in other bioreactors.

Modeling of flat otter boards motion in three dimensional space (평판형 전개판의 3차원 운동 모델링)

  • Choe, Moo-Youl;Lee, Chun-Woo;Lee, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.43 no.1
    • /
    • pp.49-61
    • /
    • 2007
  • Otter boards in the trawl are the one of essential equipments for the net mouth to be spread to the horizontal direction. Its performance should be considered in the light of the spreading force to the drag and the stability of towing in the water. Up to the present, studies of the otter boards have focused mainly on the drag and lift force, but not on the stability of otter boards movement in 3 dimensional space. In this study, the otter board is regarded as a rigid body, which has six degrees of freedom motion in three dimensional coordinate system. The forces acting on the otter boards are the underwater weight, the resistance of drag and spread forces and the tension on the warps and otter pendants. The equations of forces were derived and substituted into the governing equations of 6 degrees of freedom motion, then the second order of differential equations to the otter boards were established. For the stable numerical integration of this system, Backward Euler one of implicit methods was used. From the results of the numerical calculation, graphic simulation was carried out. The simulations were conducted for 3 types of otter boards having same area with different aspect ratio(${\lambda}=0.5,\;1.0,\;1.5$). The tested gear was mid-water trawl and the towing speed was 4k't. The length of warp was 350m and all conditions were same to each otter board. The results of this study are like this; First, the otter boards of ${\lambda}=1.0$ showed the longest spread distance, and the ${\lambda}=0.5$ showed the shorted spread distance. Second, the otter boards of ${\lambda}=1.0$ and 1.5 showed the upright at the towing speed of 4k't, but the one of ${\lambda}=0.5$ heeled outside. Third, the yawing angles of three otter boards were similar after 100 seconds with the small oscillation. Fourth, it was revealed that the net height and width are affected by the characteristics of otter boards such as the lift coefficient.

Performance Evaluation of Hypersonic Turbojet Experimental Aircraft Using Integrated Numerical Simulation with Pre-cooled Turbojet Engine

  • Miyamoto, Hidemasa;Matsuo, Akiko;Kojima, Takayuki;Taguchi, Hideyuki
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.671-679
    • /
    • 2008
  • The effect of Pre-cooled Turbojet Engine installation and nozzle exhaust jet on Hypersonic Turbojet EXperimental aircraft(HYTEX aircraft) were investigated by three-dimensional numerical analyses to obtain aerodynamic characteristics of the aircraft during its in-flight condition. First, simulations of wind tunnel experiment using small scale model of the aircraft with and without the rectangular duct reproducing engine was performed at M=5.1 condition in order to validate the calculation code. Here, good agreements with experimental data were obtained regarding centerline wall pressures on the aircraft and aerodynamic coefficients of forces and moments acting on the aircraft. Next, full scale integrated analysis of the aircraft and the engine were conducted for flight Mach numbers of M=5.0, 4.0, 3.5, 3.0, and 2.0. Increasing the angle of attack $\alpha$ of the aircraft in M=5.0 flight increased the mass flow rate of the air captured at the intake due to pre-compression effect of the nose shockwave, also increasing the thrust obtained at the engine plug nozzle. Sufficient thrust for acceleration were obtained at $\alpha=3$ and 5 degrees. Increase of flight Mach number at $\alpha=0$ degrees resulted in decrease of mass flow rate captured at the engine intake, and thus decrease in thrust at the nozzle. The thrust was sufficient for acceleration at M=3.5 and lower cases. Lift force on the aircraft was increased by the integration of engine on the aircraft for all varying angles of attack or flight Mach numbers. However, the slope of lift increase when increasing flight Mach number showed decrease as flight Mach number reach to M=5.0, due to the separation shockwave at the upper surface of the aircraft. Pitch moment of the aircraft was not affected by the installation of the engines for all angles of attack at M=5.0 condition. In low Mach number cases at $\alpha=0$ degrees, installation of the engines increased the pitch moment compared to no engine configuration. Installation of the engines increased the frictional drag on the aircraft, and its percentage to the total drag ranged between 30-50% for varying angle of attack in M=5.0 flight.

  • PDF

Study on the Aerodynamic Characteristics of an Wing Depending on the Propeller Mounting Position (프로펠러 장착 위치에 따른 날개의 공력 특성 변화 연구)

  • Inseo, Choi;Cheolheui, Han
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.54-63
    • /
    • 2022
  • Recently, electric propulsion aircraft with various propeller mounting positions have been under construction. The position of the propeller relative to the wing can significantly affect the aerodynamic performance of the aircraft. Placing the propeller in front of the wing produces a complex swirl flow behind or around the propeller. The up/downwash induced by the swirl flow can alter the wing's local effective angle of attack, causing a change in the aerodynamic load distribution across the wing's spanwise direction. This study investigated the influence of the distance between a propeller and a wing on the aerodynamic loads on the wing. The swirl flow generated by the propeller was modelled using an actuator disk theory, and the wing's aerodynamics were analysed with the VSPAERO tool. Results of the study were compared to wind tunnel test data and established that both axial and spanwise distance between the propeller and the wing positively affect the wing's lift-to-drag ratio. Specifically, it was observed that the lift-to-drag ratio increases when the propeller is positioned higher than the wing.

Fabrication and Characteristics of Integrated Nb DC SQUID (집적화된 Nb DC SQUID 소자의 제작 및 특성)

  • Lee, Yong-Ho;Gwon, Hyeok-Chan;Kim, Jin-Mok;Park, Jong-Cheol
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.3
    • /
    • pp.277-281
    • /
    • 1992
  • We have designed, fabricated and tested an integrated planar DC SQUID which incorporates input coil and mofulation coil in thin film structure. The SQUID uses Nb /Al-oxide /Nb Josephson junctions and Pd shunt resistors, and the SQUID loop incorporates two rings connected in series forming figure '8' structure and has the advantage of a negligibly small circulating current for the spatially homogeneous noise fields. The devices were fabricated using photolithographic technique, RF magnetron sputtering, anodic oxidation for insulation and lift-off process. The preliminary test of the fabricated SQUID at 4.2 K showed that the flux-voltage characteristics were smooth enough to adopt standard readout system, and the voltage noise was too small to be measured by direct method and so the white noise was thought to be less than $10^{-4}\;{\phi}_o/\;\sqrt{H_z}$.

  • PDF

Development of HST electronic control system for combine (II)- Outdoor tests for control Characteristics - (콤바인 HST 전자제어시스템 개발- 제어특성 실외시험 -)

  • Seo, Sin-Won;Huh, Yun-Kun;Lee, Je-Yong;Lee, Chang-Kyu;Bae, Keun-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.121-128
    • /
    • 2011
  • I/An electro-hydraulic transmission having advantages of convenience, safety, simple linking and high power, and an electronic control system were designed and fabricated. In this study, characteristics of the control system were investigated through outdoor tests for evaluation of installation of the system on a combine. Major findings were as followings. 1. Experiment for performance evaluation of the control system was conducted on concrete road. With steering lever in neutral position, driving HST swash plate and left/right wheel speed increased in proportion to driving lever angle. In case of steering control, steering swash plate angle changed in proportion to steering lever angle. This should cause increase in outer wheel speed, but it was observed that HST swash plate was controlled toward neutral to maintain the speed before steering. As a result, speed before steering was maintained despite the change in outer wheel speed by steering HST swash plate angle change. 2. It was observed that the HST system enabled steering with outer wheel maintained at constant speeds while inner wheel speed decreased, which was more stable than conventional mechanical links. In addition, for the selected 5 criteria, experiment showed satisfactory results and it was judged that installation on real vehicle would be feasible. 3. The control system showed response property of appropriate forward/reverse movement and lift/right steering, without causing any problems during experiment on concrete. Result of response property experiment on field operation also showed appropriate control over forward/reverse movement and left/right steering.

Flow-Turbine Interaction CFD Analysis for Performance Evaluation of Vertical Axis Tidal Current Turbines (II) (수직축 조류 터빈 발전효율 평가를 위한 유동-터빈 연동 CFD 해석 (II))

  • Yi, Jin-Hak;Oh, Sang-Ho;Park, Jin-Soon;Lee, Kwang-Soo;Lee, Sang-Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.73-78
    • /
    • 2013
  • CFD (computational fluid dynamics) analyses that considered the dynamic interaction effects between the flow and a turbine were performed to evaluate the power output characteristics of two representative vertical-axis tidal-current turbines: an H-type Darrieus turbine and Gorlov helical turbine (GHT). For this purpose, a commercial CFD code, Star-CCM+, was utilized, and the power output characteristic were investigated in relation to the scale ratio using the relation between the Reynolds number and the lift-to-drag ratio. It was found that the power coefficients were significantly reduced when the scaled model turbine was used, especially when the Reynolds number was lower than $10^5$. The power output characteristics of GHT in relation to the twisting angle were also investigated using a three-dimensional CFD analysis, and it was found that the power coefficient was maximized for the case of a Darrieus turbine, i.e., a twisting angle of $0^{\circ}$, and the torque pulsation ratio was minimized when the blade covered $360^{\circ}$ for the case of a turbine with a twisting angle of $120^{\circ}$.

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter (다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정)

  • Kee, Young-Jung;Kim, Deog-Kwan;Shin, Jin-Wook
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.6
    • /
    • pp.52-59
    • /
    • 2019
  • The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

Flow Characteristics of WIG-Effect Vehicle with Direct-Underside-Pressurization System and Propeller (DUP와 프로펠러가 있는 위그선 주위의 유동특성)

  • Lee, Ju-Hee;Kim, Byeong-Sam;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.649-654
    • /
    • 2010
  • A three-dimensional numerical study of the WIG-effect vehicle with a direct-underside-pressurization (DUP) system and a propeller is performed to analyze the aerodynamic forces and moments acting on the vehicle. The computational model includes all the compartments of a WIG-effect vehicle, including a propeller in the middle of the fuselage and an air chamber under the fuselage. The DUP system and propeller help considerably reduce the take-off speed and minimize the effect of the hump drag when the vehicle accelerates to take off on water. The airflow is accelerated by a propeller, and the air then enters the air chamber through a channel in the middle of the fuselage, this air helps increase the lift since the dynamic pressure of air is converted to static pressure. However, the air accelerated by the propeller produces excessive drag and creates yawing moment. It is found that the effect of yawing and rolling moments on static stability is negligible.