• Title/Summary/Keyword: Lifetime of Network

Search Result 670, Processing Time 0.027 seconds

Dynamic Sensing-Rate Control Scheme Using a Selective Data-Compression for Energy-Harvesting Wireless Sensor Networks (에너지 수집형 무선 센서 네트워크에서 선택적 데이터 압축을 통한 동적 센싱 주기 제어 기법)

  • Yoon, Ikjune;Yi, Jun Min;Jeong, Semi;Jeon, Joonmin;Noh, Dong Kun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • In wireless sensor networks, increasing the sensing rate of each node to improve the data accuracy usually incurs a decrease of network lifetime. In this study, an energy-adaptive data compression scheme is proposed to efficiently control the sensing rate in an energy-harvesting wireless sensor network (WSN). In the proposed scheme, by utilizing the surplus energy effectively for the data compression, each node can increase the sensing rate without any rise of blackout time. Simulation result verifies that the proposed scheme gathers more amount of sensory data per unit time with lower number of blackout nodes than the other compression schemes for WSN.

A Development on the Fault Prognosis of Bearing with Empirical Mode Decomposition and Artificial Neural Network (경험적 모드 분해법과 인공 신경 회로망을 적용한 베어링 상태 분류 기법)

  • Park, Byeonghui;Lee, Changwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.985-992
    • /
    • 2016
  • Bearings have various uses in industrial equipment. The lifetime of bearings is often lesser than anticipated at the time of purchase, due to environmental wear, processing, and machining errors. Bearing conditions are important, since defects and damage can lead to significant issues in production processes. In this study, we developed a method to diagnose faults in the bearing conditions. The faults were determined using kurtosis, average, and standard deviation. An intrinsic mode function for the data from the selected axis was extracted using empirical mode decomposition. The intrinsic mode function was obtained based on the frequency, and the learning data of ANN (Artificial Neural Network) was concluded, following which the normal and fault conditions of the bearing were classified.

Building Efficient Multi-level Wireless Sensor Networks with Cluster-based Routing Protocol

  • Shwe, Hnin Yu;Kumar, Arun;Chong, Peter Han Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4272-4286
    • /
    • 2016
  • In resource constrained sensor networks, usage of efficient routing protocols can have significant impact on energy dissipation. To save energy, we propose an energy efficient routing protocol. In our approach, which integrates clustering and routing in sensor networks, we perform network coding during data routing in order to achieve additional power savings in the cluster head nodes. Efficacy of the proposed method in terms of the throughput and end-to-end delay is demonstrated through simulation results. Significant network lifetime is also achieved as compared with other techniques.

An Energy Efficient Cluster Formation and Maintenance Scheme for Wireless Sensor Networks

  • Hosen, A.S.M. Sanwar;Kim, Seung-Hae;Cho, Gi-Hwan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.3
    • /
    • pp.276-283
    • /
    • 2012
  • Nowadays, wireless sensor networks (WSNs) comprise a tremendously growing infrastructure for monitoring the physical or environmental conditions of objects. WSNs pose challenges to mitigating energy dissipation by constructing a reliable and energy saving network. In this paper, we propose a novel network construction and routing method by defining three different duties for sensor nodes, that is, node gateways, cluster heads, and cluster members, and then by applying a hierarchical structure from the sink to the normal sensing nodes. This method provides an efficient rationale to support the maximum coverage, to recover missing data with node mobility, and to reduce overall energy dissipation. All this should lengthen the lifetime of the network significantly.

Secure Mobile Query in Wireless Sensor Networks (무선 센서 네트워크에서의 안전한 모바일 쿼리 프로토콜)

  • Lim, Chae Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.23 no.6
    • /
    • pp.1191-1197
    • /
    • 2013
  • In large-scale distributed sensor networks, it is often recommended to employ mobile sinks, instead of fixed base stations, for data collection to prolong network lifetime and enhance security. Mobile sinks may also be used, e.g., for network repair, identification and isolation of compromised sensor nodes and localized reprogramming, etc. In such circumstances, mobile sinks should be able to securely interact with neighbor sensor nodes while traversing the network. This paper presents a secure and efficient mobile query protocol that can be used for such purposes.

An Energy Efficient MAC Protocol Providing Guaranteed Service for Wireless Sensor Network

  • Kim, Dong-Won;Park, Tae-Geon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.123-140
    • /
    • 2011
  • In this paper, we propose an Energy Efficient Media Access Control (EE-MAC) protocol for wireless sensor networks. The proposed scheme is designed to save power consumption and guarantee quality-of-service for real-time traffic. EE-MAC uses the superframe structure which is bounded by the transmission of a beacon frame and can have an active and an inactive portion. The active period is divided into the contention free period (CFP) for real-time traffic transmission and the contention access period (CAP) for non-real-time traffic transmission. We propose the exclusively allocated backoff scheme which assigns a unique backoff time value to each real-time node based on bandwidth allocation and admission control. This scheme can avoid collision between real-time nodes by controlling distributed fashion and take effect a statistical time division multiple access. We also propose the algorithm to change the duty cycle adaptively according to channel utilization of media depending on network traffic load. This algorithm can prolong network lifetime by reducing the amount of energy wasted on idle listening.

Power Dissipation Considered AODV for Fair Energy Distribution in MANET (MANET에서 에너지 균등분배를 위해 전원상태를 고려한 AODV)

  • Song, Sang-Bok;Lee, Soong-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.469-477
    • /
    • 2008
  • The standard routing protocol of MANET(Mobile Ad-hoc NETwork), AODV(Ad-hoc On-demand Distance Vector), only considers the shortest path for routing, which may cause traffic concentration to a node at the critical path. Hence, the battery of the node will be dissipated rapidly to reduce the lifetime of the whole network. In this paper, power dissipation considered AODV is proposed for fair energy distribution in MANET, and verified using the computer simulation.

A Low Overhead, Energy Efficient, Sink-initiated Multipath Routing Protocol for Static Wireless Sensor Networks

  • Razzaque, Md. Abdur;Hong, Choong Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.1167-1169
    • /
    • 2009
  • Multipath routing in wireless sensor networks has been proven to provide with increased data delivery ratio, security, robustness to node and link failures, network throughput, etc. However, the energy cost for multiple routes construction and their maintenance is very high. This paper proposes a sink-initiated, node-disjoint multipath routing protocol for static wireless sensor networks that significantly minimizes the route construction messages and thereby saves the critical batter energy of sensor nodes. It also distributes the traffic load spatially over many nodes in the forwarding paths, which ensures balanced energy consumption in the network and thereby increases the network lifetime. The simulation results show that it decreases the routing overhead as well as the standard deviation of nodes' residual energies.

Graph Coloring based Clustering Algorithm for Wireless Sensor Network (무선 센서 네트워크에서의 그래프 컬러링 기반의 클러스터링 알고리즘)

  • Kim, J.H.;Chang, H.S.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10d
    • /
    • pp.306-311
    • /
    • 2007
  • 본 논문에서는 Wireless Sensor Network상에서 전체 노드들의 lifetime을 증대시키기 위하여 "random한" 방식으로 cluster-head를 선출하는 LEACH 알고리즘이 가지고 있는 cluster-head 선출 과정에서 선출되는 수와 선출되는 노드들의 위치가 적절히 분산되지 않는 문제를 해결하기 위해 변형된 Graph Coloring 문제를 기반으로 노드의 위치 정보를 사용하지 않고 cluster-head를 적절히 분산하여 선출함으로써 효율적인 clustering을 하는 중앙처리 방식의 새로운 알고리즘 "GCCA : Graph Coloring based Clustering Algorithm for Wireless Sensor Networks" 을 제안한다. GCCA는 cluster-head가 선출되는 수를 일정하게 유지하고 선출되는 노드의 위치가 전체 network area에 적절히 분산되는 효과를 가져 옴으로 LEACH 알고리즘보다 에너지 효율이 증대됨을 실험을 통하여 보인다.

  • PDF

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.