• Title/Summary/Keyword: Lifetime of Network

Search Result 670, Processing Time 0.029 seconds

A Clustering Protocol with Mode Selection for Wireless Sensor Network

  • Kusdaryono, Aries;Lee, Kyung-Oh
    • Journal of Information Processing Systems
    • /
    • v.7 no.1
    • /
    • pp.29-42
    • /
    • 2011
  • Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. One critical issue in wireless sensor networks is how to gather sensed information in an energy efficient way, since their energy is limited. The clustering algorithm is a technique used to reduce energy consumption. It can improve the scalability and lifetime of wireless sensor networks. In this paper, we introduce a clustering protocol with mode selection (CPMS) for wireless sensor networks. Our scheme improves the performance of BCDCP (Base Station Controlled Dynamic Clustering Protocol) and BIDRP (Base Station Initiated Dynamic Routing Protocol) routing protocol. In CPMS, the base station constructs clusters and makes the head node with the highest residual energy send data to the base station. Furthermore, we can save the energy of head nodes by using the modes selection method. The simulation results show that CPMS achieves longer lifetime and more data message transmissions than current important clustering protocols in wireless sensor networks.

Balancing of Routing Energy Consumption in Wireless Ad-hoc Networks (무선 Ad-hoc 망에서 라우팅 에너지 소비의 균형 기법)

  • 강용혁;엄영익
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2000.11a
    • /
    • pp.97-101
    • /
    • 2000
  • Energy consumption is considered as a principal ingredient in mobile wireless ad-hoc networks. In such a network, most of mobile nodes takes a role in forwarding messages received from neighbor nodes. Energy of these nodes is consumed in different rates depending on message traffic routes. This paper proposes a scheme to balance routing energy consumption by transferring routing function from node with small residual energy to node with enough residual energy. This scheme requires additional local message transfer, increasing the energy consumption of nodes to transfer routing function, and increasing total energy consumption of ad-hoc network. But balancing of energy consumption make the system lifetime the longer and increase the average node lifetime.

  • PDF

Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks

  • Lai, Wei Kuang;Fan, Chung-Shuo;Shieh, Chin-Shiuh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.4
    • /
    • pp.1237-1255
    • /
    • 2014
  • In wireless sensor networks (WSNs), hierarchical clustering is an efficient approach for lower energy consumption and extended network lifetime. In cluster-based multi-hop communications, a cluster head (CH) closer to the sink is loaded heavier than those CHs farther away from the sink. In order to balance the energy consumption among CHs, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the MLCRA protocols.

Privacy-Preserving, Energy-Saving Data Aggregation Scheme in Wireless Sensor Networks

  • Zhou, Liming;Shan, Yingzi
    • Journal of Information Processing Systems
    • /
    • v.16 no.1
    • /
    • pp.83-95
    • /
    • 2020
  • Because sensor nodes have limited resources in wireless sensor networks, data aggregation can efficiently reduce communication overhead and extend the network lifetime. Although many existing methods are particularly useful for data aggregation applications, they incur unbalanced communication cost and waste lots of sensors' energy. In this paper, we propose a privacy-preserving, energy-saving data aggregation scheme (EBPP). Our method can efficiently reduce the communication cost and provide privacy preservation to protect useful information. Meanwhile, the balanced energy of the nodes can extend the network lifetime in our scheme. Through many simulation experiments, we use several performance criteria to evaluate the method. According to the simulation and analysis results, this method can more effectively balance energy dissipation and provide privacy preservation compared to the existing schemes.

A Layer-based Dynamic Unequal Clustering Method in Large Scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 계층 기반의 동적 불균형 클러스터링 기법)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6081-6088
    • /
    • 2012
  • An unequal clustering method in wireless sensor networks is the technique that forms the cluster of different size. This method decreases whole energy consumption by solving the hot spot problem. In this paper, I propose a layer-based dynamic unequal clustering using the unequal clustering model. This method decreases whole energy consumption and maintain that equally using optimal cluster's number and cluster head position. I also show that proposed method is better than previous clustering method at the point of network lifetime.

Development of Structural Health Monitoring System based USN for a Huge Infrastructure (USN 기반의 대형 사회 기반 시설물 계측 시스템 개발)

  • Kim, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • With due to the recent development of USN (Ubiquitous Sensor Network) technology, a monitoring system has been developing for assuring the structural integrity of infrastructure through normal or long term measurements during their lifetime. An accident such as a collapse of infrastructure may cause not only loss of life but also damage to the economy of the nation. In order to enhance the availability of infrastructure and to be able to maintain their lifetime, it is necessary to monitor and to evaluate continuously the structural integrity throughout their entire lifetime. The purpose of this paper is to develop a monitoring system integrated with evaluation function based on the ubiquitous technology. The most essential part of this study is focusing more on developing a specific module convertible to A/D, which is to enhance the applicability of sensors that had not been applied to existing monitoring systems. Conclusively it has been successfully enhanced to make more diverse the number of sensors and measuring techniques for the monitoring system.

A Location-Aided Cooperative Transmission Method in Mobile Ad-hoc Wireless Sensor Networks (모바일 Ad-hoc 무선 센서 네트워크에서 위치도움 협력 전송 방법)

  • Son, Dong-Hwan;Lee, Joo-Sang;An, Beongku;Kong, Hyung-Yun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2008
  • In this paper, we propose location-aided cooperative routing protocol (LACARP) for supporting power saving and stable route lifetime in mobile ad-hoc wireless sensor networks. The main ideas and features of the proposed routing protocol are as follows. First, the definition of the area of route search using location-based information to support power saving transmission. Second, the expect zone-based establishment of routing route within the area of route search. Third, the cooperative-aided transmission method. In the operation of data transmission over the established rout the datas are transmitted via both the established route and cooperative route aided by neighbor nodes. The performance evaluation using OPNET(Optimized Network Engineering Tool) shows the LACARP can improve the packet delivery ratio and power saving transmission efficiently.

  • PDF

A Back-Pressure Algorithm for Lifetime Extension of the Wireless Sensor Networks with Multi-Level Energy Thresholds (센서네트워크 수명 연장을 위한 에너지 임계값 기반 다단계 Back-Pressure 알고리즘)

  • Jeong, Dae-In
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1083-1096
    • /
    • 2008
  • This paper proposes an energy-aware path management scheme, so-called the TBP(Threshold based Back-Pressure) algorithm, which is designed for lifetime extension of the energy-constrained wireless sensor networks. With the goal of fair energy consumptions, we extensively utilize the available paths between the source and the sink nodes. The traffic distribution feature of the TBP algorithm operates in two scales; the local and the whole routing area. The threshold and the back-pressure signal are introduced for implementing those operations. It is noticeable that the TBP algorithm maintains the scalability by defining both the threshold and the back-pressure signal to have their meanings locally confined to one hop only. Throughout several experiments, we observe that the TBP algorithm enhances the network-wide energy distribution. which implies the extension of the network lifetime. Additionally, both the delay and the throughput outcomes show remarkable improvements. This shows that the energy-aware path control scheme holds the effects of the congestion control.

Improved Routing Metrics for Energy Constrained Interconnected Devices in Low-Power and Lossy Networks

  • Hassan, Ali;Alshomrani, Saleh;Altalhi, Abdulrahman;Ahsan, Syed
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2016
  • The routing protocol for low-power and lossy networks (RPL) is an internet protocol based routing protocol developed and standardized by IETF in 2012 to support a wide range of applications for low-power and lossy-networks (LLNs). In LLNs consisting of resource-constrained devices, the energy consumption of battery powered sensing devices during network operations can greatly impact network lifetime. In the case of inefficient route selection, the energy depletion from even a few nodes in the network can damage network integrity and reliability by creating holes in the network. In this paper, a composite energy-aware node metric ($RER_{BDI}$) is proposed for RPL; this metric uses both the residual energy ratio (RER) of the nodes and their battery discharge index. This composite metric helps avoid overburdening power depleted network nodes during packet routing from the source towards the destination oriented directed acyclic graph root node. Additionally, an objective function is defined for RPL, which combines the node metric $RER_{BDI}$ and the expected transmission count (ETX) link quality metric; this helps to improve the overall network packet delivery ratio. The COOJA simulator is used to evaluate the performance of the proposed scheme. The simulations show encouraging results for the proposed scheme in terms of network lifetime, packet delivery ratio and energy consumption, when compared to the most popular schemes for RPL like ETX, hop-count and RER.

Implementation of LMPR on TinyOS for Wireless Sensor Network (전송 부하를 분산하는 무선 센서 네트워크 구축을 위한 TinyOS 기반 LMPR 구현)

  • Oh, Yong-Taek;Kim, Pung-Hyeok;Jeong, Kug-Sang;Choi, Deok-Jai
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.12
    • /
    • pp.136-146
    • /
    • 2006
  • In Wireless Sensor Network(WSN) a sensor node transfers sensing data to the base-node through multi-hop because of the limited transmission range. Also because of the limited energy of the sensor node, the sensor nodes are required to consume their energy evenly to prolong the lifetime of the network. LMPR is a routing protocol for WSN, LMPR configures the network autonomously based on level which is the depth from the base-node, and distributes the transmission and computation load of the network to each sensor node. This paper implements LMPR on TinyOS and experiments on the performance of LMPR in WSN. As the result, the average of the received rate of LMPR is 91.39% and LMPR distributes the load of the transmission and computation about 4.6 times compare to the shortest cost routing protocol. We expect LMPR evenly distributes the transmission and computation load of the network to each node, and the lifetime of the network will be longer than it used to be.

  • PDF