• Title/Summary/Keyword: Lifetime of Network

Search Result 670, Processing Time 0.025 seconds

Delay and Energy Efficient Data Aggregation in Wireless Sensor Networks

  • Le, Huu Nghia;Choe, Junseong;Shon, Minhan;Choo, Hyunseung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.607-608
    • /
    • 2012
  • Data aggregation is a fundamental problem in wireless sensor networks which attracts great attention in recent years. Delay and energy efficiencies are two crucial issues of designing a data aggregation scheme. In this paper, we propose a distributed, energy efficient algorithm for collecting data from all sensor nodes with the minimum latency called Delay-aware Power-efficient Data Aggregation algorithm (DPDA). The DPDA algorithm minimizes the latency in data collection process by building a time efficient data aggregation network structure. It also saves sensor energy by decreasing node transmission distances. Energy is also well-balanced between sensors to achieve acceptable network lifetime. From intensive experiments, the DPDA scheme could significantly decrease the data collection latency and obtain reasonable network lifetime compared with other approaches.

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.

Study on the Optimization Algorithm for Member Lifetime in Community Computing Environments (커뮤니티 컴퓨팅 환경에서의 멤버 생존시간 최적화 알고리즘 연구)

  • Kim, Ki-Young;Park, Hyae-Seong;Noh, Kyung-Woo;Kim, Seok-Yoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1273-1278
    • /
    • 2008
  • In community computing environments, various members cooperate with each other systematically for attaining each community's goals. Because community computing environments are organized on the basis of PAN (Personal Area Network), each member commonly uses the power of batteries. If one member in community uses up the power of battery and does not operate normally, the community will not be able to provide the ultimate service goals for its users and be terminated finally. Therefore, it is necessary for accurate community operation to prevent a specific member's lifetime from terminating, as checking each member's power consumption in real-time. In this paper, we propose WEL (WEighted Leach) algorithm for optimizing lifetime of the members in community.

Cluster Routing for Service Lifetime of Wireless Multimedia Sensor Networks (무선 멀티미디어 센서 네트워크의 서비스 수명을 위한 클러스터 라우팅)

  • Lee, Chongdeuk
    • Journal of Digital Convergence
    • /
    • v.11 no.5
    • /
    • pp.279-284
    • /
    • 2013
  • This paper proposes a new cluster-based routing protocol for assuring the service lifetime of wireless multimedia sensor networks. The proposed protocol performs the intra-cluster routing and inter-cluster routing to reduce the energy consumption and service lifetime in the wireless sensor multimedia computing environment, and the proposed mechanism enhances the routing reliability, and it minimizes the packet loss, overhead, and energy consumption. The simulation results show that the proposed mechanism outperforms DSR and AODV.

Routing Protocol for Hybrid Ad Hoc Network using Energy Prediction Model (하이브리드 애드 혹 네트워크에서의 에너지 예측모델을 이용한 라우팅 알고리즘)

  • Kim, Tae-Kyung
    • Journal of Internet Computing and Services
    • /
    • v.9 no.5
    • /
    • pp.165-173
    • /
    • 2008
  • Hybrid ad hoc networks are integrated networks referred to Home Networks, Telematics and Sensor networks can offer various services. Specially, in ad hoc network where each node is responsible for forwarding neighbor nodes' data packets, it should net only reduce the overall energy consumption but also balance individual battery power. Unbalanced energy usage will result in earlier node failure in overloaded nodes. it leads to network partitioning and reduces network lifetime. Therefore, this paper studied the routing protocol considering efficiency of energy. The suggested algorithm can predict the status of energy in each node using the energy prediction model. This can reduce the overload of establishing route path and balance individual battery power. The suggested algorithm can reduce power consumption as well as increase network lifetime.

  • PDF

Energy-aware Routing Protocol using Multi-route Information in Wireless Ad-hoc Networks with Low Mobility (저이동성을 갖는 무선 애드혹 망에서 다중 경로 정보를 이용한 에너지 인지 라우팅 프로토콜)

  • Hong, Youn-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.4
    • /
    • pp.55-65
    • /
    • 2010
  • We present a method for increasing network lifetime without link failure due to lack of battery capacity of nodes in wireless ad-hoc networks with low mobility. In general, a node with larger remaining battery capacity represents the one with lesser traffic load. Thus, a modified AODV routing protocol is proposed to determine a possible route by considering a remaining battery capacity of a node. Besides, the total energy consumption of all nodes increase rapidly due to the huge amount of control packets which should be flooded into the network. To reduce such control packets efficiently, a source node can store information about alternative routes to the destination node into its routing table. When a link failure happens, the source node should retrieve the route first with the largest amount of the total remaining battery capacity from its table entries before initiating the route rediscovery process. To do so, the possibility of generating unnecessary AODV control packets should be reduced. The method proposed in this paper increases the network lifetime by 40% at most compared with the legacy AODV and MMBCR.

A Distributed Method for Bottleneck Node Detection in Wireless Sensor Network (무선 센서망의 병목 노드 탐색을 위한 분산 알고리즘)

  • Gou, Haosong;Kim, Jin-Hwan;Yoo, Young-Hwan
    • The KIPS Transactions:PartC
    • /
    • v.16C no.5
    • /
    • pp.621-628
    • /
    • 2009
  • Wireless sensor networks (WSNs) have been considered as a promising method for reliably monitoring both civil and military environments under hazardous or dangerous conditions. Due to the special property and difference from the traditional wireless network, the lifetime of the whole network is the most important aspect. The bottleneck nodes widely exist in WSNs and lead to decrease the lifetime of the whole network. In order to find out the bottleneck nodes, the traditional centralized bottleneck detection method MINCUT has been proposed as a solution for WSNs. However they are impractical for the networks that have a huge number of nodes. This paper first proposes a distributed algorithm called DBND (Distributed Bottleneck Node detection) that can reduce the time for location information collection, lower the algorithm complexity and find out the bottleneck nodes quickly. We also give two simple suggestions of how to solve the bottleneck problem. The simulation results and analysis show that our algorithm achieves much better performance and our solutions can relax the bottleneck problem, resulting in the prolonging of the network lifetime.

Heterogeneity-aware Energy-efficient Clustering (HEC) Technique for WSNs

  • Sharma, Sukhwinder;Bansal, Rakesh Kumar;Bansal, Savina
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.1866-1888
    • /
    • 2017
  • Efficient energy consumption in WSN is one of the key design issues for improving network stability period. In this paper, we propose a new Heterogeneity-aware Energy-efficient Clustering (HEC) technique which considers two types of heterogeneity - network lifetime and of sensor nodes. Selection of cluster head nodes is done based on the three network lifetime phases: only advanced nodes are allowed to become cluster heads in the initial phase; in the second active phase all nodes are allowed to participate in cluster head selection process with equal probability, and in the last dying out phase, clustering is relaxed by allowing direct transmission. Simulation-based performance analysis of the proposed technique as compared to other relevant techniques shows that HEC achieves longer stable region, improved throughput, and better energy dissipation owing to judicious consumption of additional energy of advanced nodes. On an average, the improvement observed for stability period over LEACH, SEP, FAIR and HEC- with SEP protocols is around 65%, 30%, 15% and 17% respectively. Further, the scalability of proposed technique is tested by varying the field size and number of sensing nodes. The results obtained are found to be quite optimistic. The impact of energy heterogeneity has also been assessed and it is found to improve the stability period though only upto a certain extent.

Lifetime Improvement of WSN by Optimizing Cluster Configuration (클러스터 구성 최적화를 통한 무선 센서 네트워크 수명 개선)

  • Lee, Jong-Yong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.117-121
    • /
    • 2018
  • A Wireless Sensor Network is a network that is composed of wireless sensor nodes. There is no restriction on the place where it can be installed because it is composed wirelessly. Instead, sensor nodes have limited energy, such as batteries. Therefore, to use the network for a long time, energy consumption should be minimized. Several protocols have been proposed to minimize energy consumption, and the typical protocol is the LEACH protocol. The LEACH protocol is a cluster-based protocol that minimizes energy consumption by dividing the sensor field into clusters. Depending on how you organize the clusters of sensor field, network lifetimes may increase or decrease. In this paper, we will improve the network lifetime by improving the cluster head selection method in LEACH Protocol.

An Energy Saving Method Using Cluster Group Model in Wireless Sensor Networks (무선 센서 네트워크에서 클러스터 그룹 모델을 이용한 에너지 절약 방안)

  • Kim, Jin-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4991-4996
    • /
    • 2010
  • Clustering method in wireless sensor network is the technique that forms the cluster to aggregate the data and transmit them at the same time that they can use the energy efficiently. Even though cluster group model is based on clustering, it differs from previous method that reducing the total energy consumption by separating energy overload to cluster group head and cluster head. In this thesis, I calculate the optimal cluster group number and cluster number in this kind of cluster group model according to threshold of energy consumption model. By using that I can minimize the total energy consumption in sensor network and maximize the network lifetime. I also show that proposed cluster group model is better than previous clustering method at the point of network energy efficiency.