• Title/Summary/Keyword: Life-cycle cost analysis

Search Result 581, Processing Time 0.035 seconds

A Study on the Life Cycle Cost Analysis of Railroad Bridges (철도교량의 생애주기비용분석에 관한 연구)

  • Park Mi-Yun;Na Ok-Pin;Hwang Young-Min;Kim Dae-Young;Cho Hyo-Nam
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.574-580
    • /
    • 2005
  • Recently, the number of bridges and tunnels in railway is increasing due to the super high-speedy of train. Also, because of successively accidents of civil structures such as bridges and dams, the importance of maintenance become influential. The purpose of this study is to show the probabilistic life cycle cost analysis technique(PLCC) of the railroad bridge as pubic-infrastructures, and reasonably to indicate the economy in life cycle cost(LCC) through a case study. Rationally for life cycle cost analysis, the data gathered through many materials considered the uncertainty such as covariance. As a result, it is indicated that prestressed concrete bridge is pretty more cost-effective during life-cycle than preflex as well as steel box bridge. In future, if the construction of database and maintenance materials for railroad infrastructure is actualized, the life cycle cost analysis for railroad can be conducted easily and practically.

  • PDF

Analysis of Economic Life Cycle for Hydro-Generator Based on Annual Equivalent Cost Method (연간등가비용법을 이용한 수력발전기의 경제적 수명주기 분석)

  • Lee, Sung-Hun;Chang, Jeong-Ho;Kim, Jin-O;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.1993-1999
    • /
    • 2011
  • Today, the power utilities is setting on the slow load growth and the aging of power equipment, and then could spend the efforts on the stability of system performance. Asset management may be defined as the process of maximizing corporate profit by maximizing performance and minimizing cost over the entire life cycle of power equipment. Therefore, asset management is great way to fulfill the economic investment and the stability of system performance. This paper presents the application of effective asset managem ent from an economic perspective. A proposed method is considering the life cycle analysis using life cycle cost methodology for hydro-generator during the total life cycle. The life cycle cost methodology include a way to calculating maintenance and operating costs. The proposed method will be expected to play an important role in investment decision making considering economic evaluation.

Life Cycle Cost Analysis of Steel Bridges on Its Paint System during Safe Life Under (강교의 도장방식에 따른 안전수명간 생애주기비용분석)

  • Han, Sang-Chul;Kim, Eun-Kyum;Cho, Sun-Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.63-68
    • /
    • 2002
  • Life Cycle Cost analysis technique is introduced to evaluate cost-effectiveness of two paint systems of steel bridges. The systems are a conventional paint system and a galvanized paint system. The all costs during safe lift such as initial cost repainting costs, disposal costs are considered for the lift cycle cost analysis. The NIST model is used and BridgeLCC 1.0 developed by the NST is utilized as the lift cycle cost analysis tool. It is concluded that, in spite of expensive initial cost, the durable paint system may be cost-effective compared with conventional paint system.

The Effects of Slab Size on Pavement Life Cycle Cost

  • Parsons, Timothy A.;Hall, Jim W.Jr
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.49-54
    • /
    • 2006
  • The purpose of this study was to determine the effect of expansion joint spacing (slab size) on the life cycle costs of owning Portland Cement Concrete (PCC) airfield pavements. Previous research has shown that slab size has a statistically significant impact on pavement performance. A probabilistic life cycle cost analysis was performed to determine if the effect of slab size on pavement performance would affect the total cost of ownership of PCC pavements. Data from 48 Pavement Condition Index (PCI) inspections of military and civilian airfields were used to develop probability-of-distress-by-condition curves, which were then used to develop probabilistic cost-of-repair-by-condition curves. A present worth life cycle cost analysis was then performed for various slab sizes, using construction costs, rehabilitation costs, and maintenance costs. Maintenance costs were determined by assuming a condition deterioration rate appropriate for each slab size and applying the cost-by-condition curves. The probabilistic cost-of-repair-by-condition curves indicated that smaller slabs are more expensive to repair on a unit cost basis. Life cycle cost analysis showed that larger slabs have a higher total cost of ownership than smaller slabs due to a faster rate of deterioration.

  • PDF

A Study on the Optimal Equipment Selection of Series Systems using Life Cycle Cost and Failure Cost (Failure Cost와 Life Cycle Cost를 고려한 연속시스템에 대한 최적 장치 선택에 관한 연구)

  • Jin Sang-Hwa;Kim Yong-Ha;Song Hee-Oeul;Yeo Yeong-Koo;Kim In-Won
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.55-59
    • /
    • 2004
  • In this study, the required life cycle cost is evaluated in consideration of the equipment's availability during its lift cycle. In order to meet the maximum availability required by the process, the failure cost and life cycle cost is assessed The optimal equipment selection method is presented according to the analysis of the failure cost and life cycle cost. For the systems in which equipments are connected serially, the optimal equipments are selected by minimizing the life cycle cost and satisfying the required system availability goal. In addition, the selection methods and lift cycle cost are analyzed according to the cost variation of the equipment. By using the life cycle evaluation procedure, the failure cost and maintenance cost needed during the life cycle of the equipment can be presented.

An Analysis on Cost Factor Reduction of Life Cycle for High Speed Train(KTX-1) Based on the Maintenance Information (유지보수정보를 활용한 고속철도차량(KTX-1) 수명주기비용 요소절감 분석)

  • Kim, Jae-Moon;Kim, Yang-Su;Chang, Chin-Young;Lee, Jong-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2169-2170
    • /
    • 2011
  • This paper presents about the analysis on cost factor reduction using the life cycle cost model for motor block in the KTX-1. Until now, most life cycle cost of the system as a whole that has been studied. but in case of railway industry part, LCC studies are needed on the subsystem like a propulsion control system because subsystems are developed continuously localization. Therefore, In this paper presents cost breakdown structure for life cycle cost (LCC) estimation for localization development of propulsion control system (Motor Block) in high speed railway vehicle (KTX-1). Also to analysis LCC on motor block, it was analyzed physical breakdown structure (PBS) and preventive cost on propulsion control system in view of maintenance cost. Based on this, we describe life cycle cost on motor block of KTX-1.

  • PDF

Optimal Design of Bridge Substructure Considering Uncertainty (불확실성을 고려한 교량 하부구조 최적설계)

  • Pack, Jang-Ho;Shin, Young-Seok;Shin, Wook-Bum;Lee, Jae-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF

A Study on the Development of Life Cycle Cost Analysis Methodology in HVAC system for Decision Maker (의사 결정자를 위한 HVAC 시스템의 LCC 분석 방법론 개발에 관한 연구)

  • Jung, Soon-Sung
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.55-63
    • /
    • 2004
  • The purpose of this study is to development of life cycle cost analysis methodology of HVAC system for decision maker. The results of this study are as follows; maintenance/management, equipment construction, planning/design, and demolition/sell phases (1) To develop the cost breakdown structure for LCC in HVAC system, this study apply the method of additional pertinent level, title, CBS number, block number and variable index. (2) LCC analysis order of HVAC system compose four phase. (3) Life cycle costing influence diagram can bring us to make the most efficient decision through a visual graphical diagram that is shown relationship among variables and that decision maker traces easily from life cycle cost analysis situation.

Life Cycle Cost Analysis of Primary Cooling System by Systematic Support Cost (각종지원금제도에 의한 냉열원시스템의 라이프 사이클 코스트 분석)

  • Kim, C.M.;Jung, S.S.;Choi, C.H.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.97-106
    • /
    • 2002
  • The purpose of this study is to analyze the life cycle cost of primary cooling system by systematic support cost. Life Cycle Cost(LCC) is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. In order to select economical primary cooling system in early heat source plan stages, the research investigates cost items and cost characteristics during project process phases such as planning/design, construction, maintenance /management, and demolition/sell phases. The study also analyze the life cycle cost by capacity leading to suggest the most economical primary cooling system by systematic support cost.

Evaluation Standard of Cost-Effectiveness Analysis for Renew of Architectural Equipment in Public Building (공공건물 건축설비 갱신 계획시 비용-효율분석 평가기준에 관한 연구)

  • Jung, Soon-Sung
    • Journal of Power System Engineering
    • /
    • v.17 no.4
    • /
    • pp.131-138
    • /
    • 2013
  • The purpose of this study is to suggest the evaluation standard of cost-effectiveness analysis for renew of architectural equipment in public building. Evaluation items of cost-effectiveness analysis for renew of architectural equipment in public building were used life cycle cost, energy consumption(ton of oil equivalent), green house gas emissions(ton of carbon dioxide) and maximum power demand. Life cycle cost is the process of making an economic assessment of an item, area, system, or facility by considering all significant costs of ownership over an economic life, expressed in terms of equivalent costs. The essence of life cycle costing is the analysis of equivalent costs of various alternative proposals. The social concern with green house gas and maximum power demand of architectural equipment field has been growing for the last several years.