• Title/Summary/Keyword: Life-cycle cost(LCC)

Search Result 317, Processing Time 0.027 seconds

A STUDY ON THE LIFE CYCLE COST ANALYSIS IN LIGHT RAIL TRANSIT BRIDGES: FOCUSED ON SUPERSTRUCTURE

  • Lee Du-heon;Kim Kyoon-tai;Kim Hyun Bae;Jun Jin-taek;Han Choong-hee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.30-40
    • /
    • 2007
  • The demand for light-rail construction projects has recently been increasing, and they are mostly supervised by private construction companies. Therefore, a private construction company that aim to raise gains from the operation of the facilities during the contract period greater than what they invested should b able to accurately calculate the costs from the aspect of Life Cycle Cost (LCC). In particular, a light-rail transit bridge that has a heavier portion from the aspect of the cost of light-rail transit construction requires a more accurate calculation method than the conventional LCC calculation method. For this, an LCC analysis model was developed and a cost breakdown structure was suggested based on literature review. The construction costs by shape of the upper part of a light-rail transit were calculated based on the cost breakdown system presented in this paper, and the cost generation cycle and cost unit price were collected and analyzed based on records on maintenance costs, rehabilitation and replacement. In addition, after forming some hypotheses in order to perform the LCC analysis, economic evaluation was conducted from the aspect of the LCC by using performance data by item.

  • PDF

INTEGRATED LIFE-CYCLE COST ANALYSIS CONSIDERING ENVIRONMENTAL COSTS: A HIGHWAY PROJECT CASE

  • Woo-Sik Jang;Heedae Park;Sungmin Kim;Seung Heon Han;Jong Seo Jeon
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.273-279
    • /
    • 2011
  • Concerns over the environment have spawned a number of research studies in the construction industry, as the construction of built environments and large infrastructures involves diverse environmental impacts and loads of hazardous emissions. Many researchers have attempted to quantify these environmental loads, including greenhouse gases, carbon dioxide, nitrogen dioxide, and sulfur dioxide, to name a few. However, little research has been conducted regarding integrating the life-cycle assessment (LCA) of environmental loads with the current life-cycle cost analysis (LCCA) approach. This study aims to estimate the environmental loads as a monetary value using the European Climate Exchange (ECX) rate and, then, to integrate those impacts with the pure construction cost. Toward this end, this study suggests an integrated approach that takes into account the environmental effect on the evaluation of the life-cycle cost (LCC). The bill of quantity (BOQ) data of a real highway project are collected and analyzed for this purpose. As a result, considering the environmental loads in the pavement process, the total LCC increased 16% from the traditional LCC cost. This study suggests an integrated approach that will account the environmental effect on the LCC. Additionally, this study is expected to contribute to better decision-making, from the perspective of more sustainable development, for government as well as for contractors.

  • PDF

Report on VE & LCC (Value Engineering, Life Cycle Cost) Technics Introduction about the Electric Power Equipment (전력시설물에 대한 VE 와 LCC기법 도입에 관한 연구)

  • 김상직;장우진
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.81-86
    • /
    • 2003
  • Recently the introduction of VE & LCC techniques for large size electric power facilities be achieved in various kinds form, of and tends to evaluate to the beginning investment cost when think about cost of electric power facilities usually, but must consider all life cycle cost (maintenance cost, repair cost, improvement cost, operation cost, electric power cost etc.). This treatise applies design techniques that consider copper loss related by voltage drop at power supply of long distance in trunk design and all life cycle cost techniques

  • PDF

Practical Application of Life-Cycle Cost Effective Design and Rehabilitation of Bridges

  • Cho, HyoNam;Park, KyungHoon;Hwang, YoonGoog;Lee, KwangMin
    • Corrosion Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.72-80
    • /
    • 2004
  • Recently, the demand on the practical application of life-cycle cost effective design and rehabilitation of bridges is rapidly growing in civil engineering practice. However, in spite of impressive progress in the researches on the Life-Cycle Cost (LCC), the most researches have only focused on the theoretical point but did not fully incorporate the critical issues for the practical implementation. Thus, this paper is intended to suggest a systemic integrated approach to the practical application of various LCC methodologies for the design and rehabilitation of bridges, For that purpose, hierarchical definitions of LCC models are presented to categorize the approach of LCC assessment applicable for the practical implementation. And then, an integrated LCC system model is introduced with an emphasis on data uncertainty assessment and user-friendly knowledge-based database for its successful implementation. Finally, in order to demonstrate the LCC effectiveness for design and rehabilitation of real bridge structures, illustrative examples are discussed.

A Life Cycle Cost Analysis in Design and Manufacturing of Production System (생산시스템의 설계/제조에서의 생애비용(LCC)에 관한 연구)

  • 함효준
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.173-183
    • /
    • 1995
  • Life cycle cost has been one of the key criteria in design or purchasing of systems, particularly in the flying weapon system. Unexpected cost increase or system breakdown during the system life can be reduced by controlling maintenance cost A system should be designed for maintainability in early stage of product life cycle. The design should be insensitive to its environmental, organizational, and human factors in the stage of customer's utilization. This paper presents LCC as a controllable variable and also suggests a new control model for LCC analysis. The estimation of maintenance cost based upon maintenance scenario, design of maintainability followed by minimizing maintainability loss function in the beginning stage of design, and increase of useful life of systems are among the factors to control LCC.

  • PDF

Life-Cycle Cost Analysis of Solution Transportation Absorption System (LCC 분석에 의한 상온 에너지수송용 흡수식 냉동기(STA)의 경제성 평가)

  • 오민규;이봉진;홍희기;강용태
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.506-513
    • /
    • 2004
  • The objective of this paper is to evaluate the economic performance of latent and sensible energy transportation systems. LCC (Life-Cycle Cost) analysis is a practical method and a guideline for evaluating the economic performance of considered systems during the Life-Cycle Period. By comparing the LCC of alternatives, The most ideal alternative is determined which has the lowest LCC. It is concluded that the cost of STA (Solution Transportation Absorption system) can be reduced by 67% to that of sensible energy transportation for study period with 10 km transportation distance.

Analysis of Life-Cycle Cost for Urban Transit System using RAM (RAM을 고려한 도시철도시스템의 수명주기비용 분석)

  • Han, Seok-Youn;Hong, Soon-Ki;Ha, Chen-Soo
    • IE interfaces
    • /
    • v.18 no.4
    • /
    • pp.477-484
    • /
    • 2005
  • This paper is concerned with the life-cycle cost(LCC) of the urban transit system which was developed by KRRI and is now under test in Gyeongsan, Korea. Its reliability, availability and maintainability(RAM) were analyzed. LCC is the core part of analyzing the total cost of acquisition and ownership of a system. LCC analysis of a system is the most effective when it is applied in the it's early design phase. In this paper, we present IEC 60300-3-3(Life Cycle Costing) in detail and propose how to apply LCC in assessing the urban transit system according to RAM process. This case study demonstrates that reliability management system is very effective in reducing the operating cost of subway corporations in Korea.

Evaluation and Selection of Building Materials based on Life Cycle Cost Prediction (생애주기비용 예측 기반 건물재료 경제성 평가 및 선정)

  • Ahn, Junghwan;Lim, Jinkang;Oh, Minho;Lee, Jaewook
    • Journal of KIBIM
    • /
    • v.5 no.2
    • /
    • pp.34-45
    • /
    • 2015
  • As buildings become larger and more complicated, construction costs have increased with a considerable effect on buildings' Life Cycle Cost (LCC). However, there has been little consideration on economic aspects in the selection of construction materials due to limited information on the materials and dependency in architects' experience and inefficiency in cost estimation, causing design changes, increase in maintenance cost, difficulty in budgeting, and decrease in building performance. To solve these problems, this study proposed a BIM-based material selection model which reflects the comprehensive economic efficiency of building materials. Our cost prediction model can estimates the material-related cost during the entire building life cycle. Furthermore, we implemented the proposed model in connection with BIM, which can analyze and compare LCC by material. Through the validation of the model, we could confirm the necessity of LCC-based material selection in comparison with the conventional cost-centered material selection.

A Life Cycle Cost Model and Procedure for the Acquisition of Rolling Stocks (철도차량 획득을 위한 수명주기비용 모형 및 적용 절차)

  • Kim, Jong-Woon;Chung, Kwang-Woo;Park, Jun-Seo;Chung, Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.3
    • /
    • pp.257-263
    • /
    • 2010
  • Operation and maintenance cost of a rolling stock is generally higher than its acquisition cost. Therefore, it is necessary for reducing life cycle cost (LCC) to make rolling stocks easy and low costly for operation and maintenance. In addition, their operation and maintenance support systems should be effective and efficient. To accomplish this, operator should specify LCC requirements in the early stage of acquisition and make a contractor to provide the rolling stocks of low LCC. This article presents a procedure and a verifiable LCC model available in the general acquisition process where an operator specify requirements and a contractor provide the rolling stock meeting the requirements.

Stochastic analysis for Real Rate Interest of Building Life Cycle Cost(LCC) with Monte-Carlo Simulation (몬테카를로 시뮬레이션을 이용한 건축물 생애주기비용(LCC)의 실질할인율에 대한 확률론적 분석)

  • Kim, Bum-Sic;Jung, Young-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.161-163
    • /
    • 2012
  • Recently on Value Engineering(VE) and Life Cycle Cost(LCC) social interests is increasing. The government Turn Key, BTL projects and public works projects, such as VE and LCC Analysis on the value and economic analysis is mandatory. And accordingly the VE and LCC analysis is underway for the various studies. However, there is a problem existing in the LCC analysis. Worth the cost varies according to the flow of time. However, the real interest rate during the LCC analysis of buildings in calculation time for interest rates and inflation are not considering the value of the flow. In other words, a few years using the average value of the deterministic analysis method has been adopted. These costs for the definitive analysis of the cost of an uncertain future, unforeseen changes resulting hazardous value. In this study of the last 15 years interest rates and inflation targeting by using Monte-Carlo Simulation is to perform probabilistic analysis. This potential to overcome uncertainties of the cost of building a more scientific and LCC Estimation of the probability value of the real interest rate is presented.

  • PDF