• Title/Summary/Keyword: Life exponent n

Search Result 38, Processing Time 0.027 seconds

A study on life decision factors of TiN films coated by Cathode Arc ion Plating Method (음극 아크 이온플레이팅법으로 코팅된 TiN 박막의 수명결정요인에 관한 연구)

  • 최석우;백영남
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.4
    • /
    • pp.222-228
    • /
    • 2000
  • The life time of cutting tool was studied in the relation with the properties of TiN coating tools. The purpose of this study is to compare the cutting conditions of the TiN coated tools with those of the non-coated tools and to find out the optimal cutting condition of the TiN coated tool. The coated tools were prepared by the sputtering process at $4$\times$10^{-3}$Torr. When the cutting speed is increased 22.2% from 90m/min, the limited life of coating bite was decreased by 60.61%, but non-coating bite was decreased by 64.05%. In the tool lifetime equation of the coated tools "a"(exponent of feed rate) was not much changed in comparison with that of the non-coated tools but "n" (exponent of tool′s life) was increased by 9.3% and "b" (exponent of cutting depth) was increased by 2.4%. It was thought to be that TiN coated tools was used for higher cutting speed than non-coated tools to improve the lifetime of the coated tools.

  • PDF

Development of the Program for Estimation Lifetime of Insulating Materials (절연재료 수명평가용 프로그램 개발)

  • Park, Sung-Min;Bae, Duk-Kweon;Lee, Sung-Il;Oh, Jae-Han;Lee, Joon-Ung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.46-49
    • /
    • 2000
  • This paper studied development of the program for estimation the life time of insullating materials and the longtime breakdown voltage. First, short-time breakdown voltage of Epoxy and insulating oil was measured. Life exponent was gained from measurement of insulating breakdown time of the specimens. Life time is presumed from program. The estimation program is based on the "Inverse Power Law", defined $V^nt$ is constant. After gaining the life exponent n, it is mapping the longtime breakdown voltages. On the base of life exponent, the estimation the lifetime and usefulness of the insulation systems are possible, furthermore easy calculation is possible.

  • PDF

An Estimation of Life Time in Epoxy Composites Using Weibull Distribution (와이블 분포를 이용한 에폭시 복합체의 수명시간 예측)

  • 오현석;이동규;장인범;박건호;김용주;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.360-363
    • /
    • 1997
  • The method of estimating life time of epoxy composites which be widely used for transformers has been studied in this paper. The breakdown properties of specimens are observed by appling high AC voltage at the room temperature from a series of the experiments. Afterwards, the breakdown time was determined under the constant voltage below the lowest breakdown voltage. Also, V-t properties were found out using weibull distribution widely used in the applications of discrete data for estimating life time of epoxy composites and life exponent n was gained properly. when life exponent is gained is found out, the tong breakdown life time at used voltage can be estimated from breakdown experiments in short time using reverse law of n power.

  • PDF

Prediction of Life-Time on the Macroscopic Interface between Solid Materials with Analysis of V-t Characteristics (V-t 특성 분석에 의한 고체 거시계면의 수명 평가)

  • 오재한;이경섭;배덕권;김충혁;이준웅
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.7
    • /
    • pp.607-611
    • /
    • 2000
  • The characteristics on the interface between Epoxy and EPDM which are materials of the underground insulation systems of power delivery have studied. The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law and the long breakdown life time can be evaluated. AC breakdown strength and life time is improved by oiling to the interface. When the low viscosity oil is spread interface has the highest life time.

  • PDF

Study on the Prediction of the Life-time in the Macroscopic Solid-Solid Interfaces (고체-고체 거시계면의 수명예측에 관한 연구)

  • 박정규;배덕권;정동회;오재한;김충혁;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.775-778
    • /
    • 2000
  • In this paper, the life-time of macro interface between Epoxy/EPDM which consists in underground power cable joints is predicted. The electrode system of specimen is designed by FEM(finite elements method). The breakdown strength of specimens are observed by applying high AC voltage at the room temperature. The breakdown times under the constant voltage below the breakdown voltage were gained. As constant voltage is applied, the breakdown time is proportion to the breakdown strength. The life exponent n is gained by inverse power law, and the long breakdown life time can be evaluated.

  • PDF

A study on development of program for estimation the Lifetime of insulating materials (절연재료의 수명예측을 위한 프로그램개발에 관한 연구)

  • 박성민;배덕권;정인재;박우현;이기식;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.699-702
    • /
    • 2000
  • Today, electrical machine is being large capacitor and EHV(Extra High Voltage) of power equipment is a need of high reliability of insulating matetials. Therefore, it is a need of fixed appraisement of lifetime to used data of breakdown. This paper studied a development of the program for estimation the lifetime of insullating materials and the long-time breakdown voltage by experimentation. The estimation program is based on the "Inverse Power Law", defined V$\^$n/t is constant. After gaining the life exponent n, it is mapping the long-time breakdown voltages. On the base of life exponent, the estimation of lifetime and usefulness of the insulation systems are possible, furthermore easy calculation is possible.

  • PDF

A Linear Change of Leakage Current and Insulation Resistance of 22 kV Cables (22 kV 케이블의 누설전류 및 절연저항의 선형적 변화)

  • Um, Kee-Hong;Lee, Kwan-Woo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.169-173
    • /
    • 2015
  • This study is to predict the life exponent by measuring, over 7 years, the insulation resistance of high-voltage cables in 22 kV operation for 13 years. We found out the lifetime index in order to determine the time-dependent trend of deteriorating performance of power cables. The insulation resistances decreased according to elapsed time. We found that: the initial measurements of the cable systems were in agreement with the deterioration properties of the Arrhenius Law. By analyzing the life curve of the cable system, we also verified that the value of the life exponent (n) in the v-t characteristics defined by Weibull distribution has values from 10 to 11. When designing the cable system, the initial value of life exponent was chosen as 9 without any grounding. We have verified that the theoretical grounding based on the design safety of n=9 was actually the best one available. In the short term, we apply our research result to the diagnosis and evaluation of the power cables. In the long run, however, we plan to reduce the cost of the installation and management of cable systems in operation at power stations.

A Study of Development Methods of Fatigue Life Improvement for the Suspension Material (현가장치재의 피로수명향상 공법개발에 관한 연구)

  • 박경동;정찬기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.196-202
    • /
    • 2004
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methods mentioned above, the following conclusions have been drawn. 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ΔKth, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A Study on the Effect of Shot Velocity by Shot Peening on fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로크랙진전특성에 미치는 쇼트피닝 투사속도의 영향)

  • 박경동;노영석
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require such expensive tools, as well as a great deal of time and effort. Therefore, the improvement of fatigue life through, the adoption of residual stress, is the main focus. The compressive residual stress was imposed on the surface according to each shot velocity(1800, 2200, 2600, 3000rpm) based on Shot-peening, which is the method of improving fatigue life and strength. By using the methose mentioned above, we arrived at the following conclusions; 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. In stage I, $\Delta$K$_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts, unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. Compressive residual stress of the surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

A Study on Shot peening on Fatigue Crack Growth Property for Marine Structural Steel (해양구조용강의 피로거동에 관한 연구)

  • Park, Kyoung-Dong;Ha, Kyoung-Jun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.313-318
    • /
    • 2003
  • The development of new materials with light weight and high strength has become vital to the machinery, aircraft and auto industries. However, there are a lot of problems with developing such materials that require expensive tools, and a great deal of time and effort. Therefore, the improvement of fatigue strength and fatigue life are mainly focused on by adopting residual stress(in this thesis). The compressive residual stress was imposed on the surface according to each shot velocity(57, 70, 83, 96 m/sec) based on Shot-peening, which is the method of improving fatigue lift: and strength. By using the methods mentioned above, I arrived at the following conclusions 1. The fatigue crack growth rate(da/dN) of the Shot-peened material was lower than that of the Un-peened material. And in stage I, ${\Delta}K_{th}$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the Un-peened material. Also m, fatigue crack growth exponent and number of cycle of the Shot-peened material was higher than that of the Un-peened material. That is concluded from effect of da/dN. 2. Fatigue life shows more improvement in the Shot-peened material than in the Un-peened material. And compressive residual stress of surface on the Shot-peen processed operate resistance force of fatigue crack propagation.

  • PDF