• 제목/요약/키워드: Life cycle energy efficiency

검색결과 139건 처리시간 0.021초

Life Cycle Analysis and Feasibility of the Use of Waste Cooking Oil as Feedstock for Biodiesel

  • Gahlaut, Aradhana;Kumar, Vasu;Gupta, Dhruv;Kumar, Naveen
    • International journal of advanced smart convergence
    • /
    • 제4권1호
    • /
    • pp.162-178
    • /
    • 2015
  • Petroleum based fossil fuels used to power most processes today are non-renewable fuels. This means that once used, they cannot be reproduced for a very long time. The maximum combustion of fossil fuels occurs in automobiles i.e. the vehicles we drive every day. Thus, there is a requirement to shift from these non-renenewable sources of energy to sources that are renewable and environment friendly. This is causing the need to shift towards more environmentally-sustainable transport fuels, preferably derived from biomass, such as biodiesel blends. These blends can be made from oils that are available in abundance or as waste e.g. waste cooking oil, animal fat, oil from seeds, oil from algae etc. Waste Cooking Oil(WCO) is a waste product and so, converting it into a transportation fuel is considered highly environmentally sustainable. Keeping this in mind, a life cycle assessment (LCA) was performed to evaluate the environmental implications of replacing diesel fuel with WCO biodiesel blends in a regular Diesel engine. This study uses Life Cycle Assessment (LCA) to determine the environmental outcomes of biodiesel from WCO in terms of global warming potential, life cycle energy efficiency (LCEE) and fossil energy ratio (FER) using the life cycle inventory and the openLCA software, version 1.3.4: 2007 - 2013 GreenDelta. This study resulted in the conclusion that the biodiesel production process from WCO in particular is more environmentally sustainable as compared to the preparation of diesel from raw oil, also taking into account the combustion products that are released into the atmosphere as exhaust emissions.

사무소건축 리모델링에서의 전과정 평가에 관한 연구 - 전기 부분을 중심으로 - (A study of LCA(Life Cycle Assessment) to a office building remodeling - Focused on Electrical Equipment -)

  • 이선동;유호천
    • 한국태양에너지학회 논문집
    • /
    • 제24권3호
    • /
    • pp.85-92
    • /
    • 2004
  • Environmental issues become one of today's central concerns due to draining natural resources and environmental pollution. Architecture is given a great deal of weight on the evoking environmental pollution. In this point of view, polluting factors in architectural planning and construction were predicted in advance and alternative plans were studied, In investigation of alternative plans, both environmental pollution and economical efficiency of various alternatives were considered. A office building was analyzed for energy consumption and construction environmental load by appling LCA. Applying LCA to a office building includes a total amount of materials and energy consumption, environmental impacts and economical efficiency evaluation. In present study, LCA applied to electrical part of a office building and economical efficiency evaluation was considered.

LCC 분석에 의한 하천수 미활용에너지 이용시스템의 경제성 평가 (Life-Cycle Analysis of the River Water Unutilized Energy System)

  • 박일환;윤형기;장기창;박준택;박성룡
    • 설비공학논문집
    • /
    • 제17권6호
    • /
    • pp.596-604
    • /
    • 2005
  • This paper presents the work on evaluating the LCC (Life-Cycle Cost) of a heat pump system as unutilized energy system. The river water as an unutilized energy source was used for the heat source of heat pump system. LCC analysis is a concrete method for evaluating the economical efficiency of energy facilities of building. The present case study shows an example of adequate use of the LCC analysis on a heat pump system and conventional gas boiler and refrigerator for building heat supply. A life cycle of 20 years was used to calculated net present value of energy cost. Over a 20 year life cycle, the energy cost could be reduced by 612 million won if a heat pump system were used instead of a conventional boiler and an absorption refrigerator.

연료전지 기반 에너지저장 시스템의 환경 전과정평가 및 에너지 효율성 분석 (Life Cycle Assessment (LCA) and Energy Efficiency Analysis of Fuel Cell Based Energy Storage System (ESS))

  • 김형석;홍석진;허탁
    • 한국수소및신에너지학회논문집
    • /
    • 제28권2호
    • /
    • pp.156-165
    • /
    • 2017
  • This study quantitatively assessed the environmental impacts of fuel cell (FC) systems by performing life cycle assessment (LCA) and analyzed their energy efficiencies based on energy return on investment (EROI) and electrical energy stored on investment (ESOI). Molten carbonate fuel cell (MCFC) system and polymer electrolyte membrane fuel cell (PEMFC) system were selected as the fuel cell systems. Five different paths to produce hydrogen ($H_2$) as fuel such as natural gas steam reforming (NGSR), centralized naptha SR (NSR(C)), NSR station (NSR(S)), liquified petroleum gas SR (LPGSR), water electrolysis (WE) were each applied to the FCs. The environmental impacts and the energy efficiencies of the FCs were compared with rechargeable batteries such as $LiFePO_4$ (LFP) and Nickel-metal hydride (Ni-MH). The LCA results show that MCFC_NSR(C) and PEMFC_NSR(C) have the lowest global warming potential (GWP) with 6.23E-02 kg $CO_2$ eq./MJ electricity and 6.84E-02 kg $CO_2$ eq./MJ electricity, respectively. For the impact category of abiotic resource depletion potential (ADP), MCFC_NGSR(S) and PEMFC_NGSR(S) show the lowest impacts of 7.42E-01 g Sb eq./MJ electricity and 7.19E-01 g Sb eq./MJ electricity, respectively. And, the energy efficiencies of the FCs are higher than those of the rechargeable batteries except for the case of hydrogen produced by WE.

상하수도시설에 대한 전과정관리(LCM)시스템 구축방안 연구 (Establishment of Life Cycle Management(LCM) System for Water Supply and Sewerage Systems)

  • 박지형;황용우;김영운;박광호
    • 상하수도학회지
    • /
    • 제26권2호
    • /
    • pp.303-312
    • /
    • 2012
  • Water supply and sewerage systems are the large-scale urban infrastructure ejecting large amount of environmental load over the life-cycle. Therefore, it is important not only to optimize in the aspect of economical superiority and process efficiency but also to consider earth scale environmental impact. This study aimed to suggest the establishment of life cycle management(LCM) system as an integrated management solution in urban water supply and sewerage systems. As a result, the methodology for LCM system consisting of life cycle assessment(LCA), life cycle cost(LCC), life cycle $CO_{2}(LCCO_{2})$ and life cycle energy(LCE) was developed. Also, several case studies using the latest statistics data of water supply and sewerage systems were carried out to investigate the field applicability of LCM.

공정폐열의 자원순환 네트워크 구성을 위한 전과정 평가 및 생태효율성 분석 (Life Cycle Assessment and Eco-efficiency Analysis for the Resource-circulation Network of Waste Heat Generated from Industrial Process)

  • 신춘환;박도현;김지원
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.281-289
    • /
    • 2013
  • For the purpose of evaluating the eco-efficiency(EE) on surplus heat generated from industrial process, techniques of life cycle assessment are adopted in this study. Because it can be indicated both environmental impacts and economic benefits, EE is well known as a useful tool for symbiosis network on the sustainable development of new projects and businesses. To evaluate environmental impacts, the categories were divided into two areas of resource depletion and global warming potential. It can be seen that environmental impact increased a little but much higher economic benefit on the company, environmental performance and economic value were improved on the apartment by the district heating, respectively. In result, eco-industrial park(EIP) project on surplus heat should be found sustainable new business because the EE was in the area of fully positively eco-efficiency and, moreover resource depletion was taken place than the reduction of greenhouse gas.

녹색기업의 사업활동 전 과정에 대한 환경성 평가 -1. 공정 흐름 및 원단위 분석 (Life Cycle Assessment for the Business Activities of Green Company -1. Analysis of Process Flow and Basic Unit)

  • 신춘환;박도현
    • 한국환경과학회지
    • /
    • 제22권3호
    • /
    • pp.269-279
    • /
    • 2013
  • In this paper, an environmental assessment was carried out on the whole process of industrial business activities to establish a basic plan for climate change mitigation and energy independency. The whole process was divided into each discharge process in terms of water, air, solid waste, green house gases and refractory organic compounds. The flowcharts and basic unit of process were analysed for three years (2008-2010), being utilized as basic information for the life cycle assessment. It was found that the unit loading for the whole process significantly depends on changes in the operation rate change and highly concentrated wastewater inflow. About 35% of solid waste production was reduced by improving the incineration method with co-combustion in coal boiler, generating about 57% of electricity used for the whole process, and consequently reducing the energy costs. As the eco-efficiency index was found to be more than 1, compared to the previous years, it can be said that improvement in general has taken place.

코발트기 초내열합금 ECY768의 고온 저주기피로 거동 (Low Cycle Fatigue Behavior of Cobalt-Base Superalloy ECY768 at Elevated Temperature)

  • 양호영;김재훈;하재석;유근봉;이기천
    • 한국안전학회지
    • /
    • 제28권3호
    • /
    • pp.18-22
    • /
    • 2013
  • The Co-base super heat resisting alloy ECY768 is employed in gas turbine because of its high temperature strength and oxidation resistance. The prediction of fatigue life for superalloy is important for improving the efficiency. In this paper, low cycle fatigue tests are performed as variables of total strain range and temperature. The relations between strain energy density and number of cycle to failure are examined in order to predict the low cycle fatigue life of ECY768 super alloy. The lives predicted by strain energy methods are found to coincide with experimental data and results obtained from the Coffin-Manson method. The fatigue lives is evaluated using predicted by Coffin-Manson method and strain energy methods is compared with the measured fatigue lives at different temperatures. The microstructure observing was performed for how affect able to low-cycle fatigue life by increasing the temperature.

간략화된 전과정 평가를 이용한 전동차 대차의 환경영향 진단 (Evaluation of environmental impacts for the bogie of electric motor unit(EMU) using simplified life cycle assessment(S-LCA))

  • 김용기;윤희택;양윤희;이재영
    • 한국철도학회논문집
    • /
    • 제8권6호
    • /
    • pp.581-585
    • /
    • 2005
  • In this study, the environmental impacts of a bogie in the electric motor unit(EMU) were evaluated quantitatively using simplified life cycle assessment(S_LCA). Target was the bogie and life cycle inventory(LCI) database for the bogie was established. The software used for simplified LCA was PASS. Environmental impacts with the parts of the bogie were dependent on their weight significantly. Among impact categories, abiotic resource depletion(ARD) and global warming(GW) were shown dominantly. Global warming was occurred mainly due to the emission of CO₂released from energy consumption and abiotic resource depletion was caused mostly by the consumption of iron ore for the manufacturing of steel. Therefore, the environmental impacts of the bogie could be reduced by the light-weighting of EMU and the improvement of energy efficiency.

무선 센서 네트워크 기반 에너지 효율성이 개선된 MAC 프로토콜 설계 (Design by Improved Energy Efficiency MAC Protocol based on Wireless Sensor Networks)

  • 이철승
    • 한국전자통신학회논문지
    • /
    • 제12권3호
    • /
    • pp.439-444
    • /
    • 2017
  • 무선 센서 네트워크 기술은 유비쿼터스 컴퓨팅 환경의 급성장중인 기술이며 다양한 분야에서 응용과 연구가 진행 되고 있다. 무선 센서 네트워크를 구성하는 센서 노드들은 분산 네트워크 환경에서 배터리를 이용하여 Life cycle을 유지하기 때문에 QoS 요구보다는 에너지 효율이 매우 중요하다. 이러한 사항을 고려하여 IEEE802.15.4의 MAC 프로토콜에서는 트래픽에 적응적인 MAC 프로토콜 연구와 무선 센서 네트워크 환경에 신뢰성과 효율성이 강조된 표준화 작업을 진행중에 있지만, 에너지 효율이 줄어든 만큼 센서 노드의 응답속도가 떨어지는 문제점을 지니고 있다. 이에 본 논문은 동기식 방식과 하이브리드 방식의 MAC 프로토콜을 분석하여 전체네트워크의 에너지 효율이 개선된 MAC 프로토콜을 설계하였다.