• Title/Summary/Keyword: Life cycle

Search Result 5,741, Processing Time 0.033 seconds

Characteristics of STS 304 Rolled Steel by High Temperature Low Cycle Fatigue (고온 저주기 피로에 의한 STS 304 압연강재의 특성연구)

  • Kim, C.H.;Park, Y.M.;Bae, M.K.;Shin, D.C.;Kim, D.W.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.12-16
    • /
    • 2019
  • In this study, strain-controlled low cycle fatigue test for hot rolled STS304 steel was carried out at $400^{\circ}C$ and $600^{\circ}C$, respectively. High temperature fatigue test was done using an electric furnace attached on the hydraulic fatigue test machine. The results of this study show that STS304 hot rolled steel has excellent static strength and fatigue characteristics. The hysteresis loop at half life was obtained in order to calculate the elastic and plastic strain. Also, Relationship between strain amplitude and fatigue life was examined in order to predict the low cycle fatigue life of STS304 steel by Coffin-Manson equation.

Greenhouse Gas Emission Analysis by LNG Fuel Tank Size through Life Cycle

  • Park, Eunyoung;Choi, Jungho
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.393-402
    • /
    • 2021
  • As greenhouse gas emissions from maritime transport are increasing, the International Maritime Organization is continuously working to strengthen emission regulations. Liquefied natural gas (LNG) fuel is less advantageous as a point of CO2 reduction due to the methane leakage that occurs during the bunkering and operation of marine engines. In this study, greenhouse gas emissions from an LNG-fueled ship were analyzed from the perspective of the life cycle. The amount ofmethane emission during the bunkering and operation procedures with various boil-off gas (BOG) treatment methods and gas engine specifications was analyzed by dynamic simulation. The results were also compared with those of other liquid fuel engines. As a result, small LNG-fueled ships without a BOG treatment facility emitted 32% more greenhouse gas than ships utilizing marine gas oil or heavy fuel oil. To achieve a greenhouse gas reduction via a BOG treatment method, a gas combustion unit or re-liquefaction system must be mounted, which results in a greenhouse gas reduction effect of about 25% and 30%. As a result of comparing the amount of greenhouse gas generated according to the BOG treatment method used with each tank size from the perspective of the operating cycle with the amounts from using existing marine fuels, the BOG treatment method showed superior effects of greenhouse gas reduction.

A STUDY ON THE LIFE CYCLE COST ANALYSIS IN LIGHT RAIL TRANSIT BRIDGES: FOCUSED ON SUPERSTRUCTURE

  • Lee Du-heon;Kim Kyoon-tai;Kim Hyun Bae;Jun Jin-taek;Han Choong-hee
    • International conference on construction engineering and project management
    • /
    • 2007.03a
    • /
    • pp.30-40
    • /
    • 2007
  • The demand for light-rail construction projects has recently been increasing, and they are mostly supervised by private construction companies. Therefore, a private construction company that aim to raise gains from the operation of the facilities during the contract period greater than what they invested should b able to accurately calculate the costs from the aspect of Life Cycle Cost (LCC). In particular, a light-rail transit bridge that has a heavier portion from the aspect of the cost of light-rail transit construction requires a more accurate calculation method than the conventional LCC calculation method. For this, an LCC analysis model was developed and a cost breakdown structure was suggested based on literature review. The construction costs by shape of the upper part of a light-rail transit were calculated based on the cost breakdown system presented in this paper, and the cost generation cycle and cost unit price were collected and analyzed based on records on maintenance costs, rehabilitation and replacement. In addition, after forming some hypotheses in order to perform the LCC analysis, economic evaluation was conducted from the aspect of the LCC by using performance data by item.

  • PDF

Consumer's Evaluating Attributes and Satisfaction/ Dissatisfaction of Life - insurance (소비자의 保險에대한 태도와 만족, 불만족에 관한 연구)

  • 박명희
    • Journal of Families and Better Life
    • /
    • v.6 no.1
    • /
    • pp.117-129
    • /
    • 1988
  • The purposes of this study are 1) to explore the evaluating attribute of family life- insurance 2) to examine the relationship between evaluation attribute variables and level of consumer satisfaction/ dissatisfaction (CS/D), and 3) to investigate the sociodemographic variables and psychological variables which influence the purchase of life-insurance. The data used in this study include 432 households of 208 life-insurance purchasers and 224 non-purchasers Statistics used for the data analysis are x2, factor analysis, multiple regression and a discriminant analysis. The resulting major findings are as follows; 1) The evaluating attributes are saving function, convenience. economic payoff, safety for future accident, agreement of insurance, and reputation of brand. 2) Among these factors. the most important factors. in CS/D of life-insurance are saving function, and reputation of brand. 3) the purchase of life-insurance has been influenced by such sociodemographic variables as husband's age , family income, and family life-cycle. Psychological variables such as attitude of life, perceived risk, consumer attitude about insurance business did not influence the purchase of life -insurance significantly. As mentioned above, we can conclude that Korean purchasers of life-insurance are using irrational evaluating attributes. Therefore more education of the consumers and more information about life-insurance purchases are necessary. Especially low-income households and first step of family life-cycle families are turned out to need more education as well as more information.

  • PDF

A Study on the 43$0^{\circ}C$ Degradation Behavior of Cast Stainless Steel(CF8M)(II)-Evaluation of Low Cycle Fatigue Characteristics- (주조 스테인리스강 CF8M의 43$0^{\circ}C$ 열화거동에 관한 연구 (II) -저사이클 피로특성 평가-)

  • Gwon, Jae-Do;U, Seung-Wan;Park, Jung-Cheol;Lee, Yong-Seon;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2183-2190
    • /
    • 2000
  • A thermal aging is observed in a primary reactor cooling system(RCS) made of a casting stainless steel when the RCS is exposed for long period at the reactor operating temperature, 290~3300C An investigation of effects of thermal aging on a low cycle fatigue characteristics included a stress variations caused by a reactor operation and trip, is required. The purpose of the present investigation is to find an effect of a thermal aging of the CF8M on a low cycle fatigue life. The specimen of CF8M are prepared by an artificially accelerated aging technique holding 300 and 1800hr at 4300C respectively. The low cycle fatigue tests for the virgin and two aged specimens are performed at the room temperature for various strain amplitudes($\varepsilon$ta), 0.3, 0.5, 0.8, 1.0, 1.2 and 1.5% strain. Through the experiment, it is found that the fatigue life is rapidly reduced with an creasing of the aging time. The experimental fatigue life estimation formulas between the virgin and two aged specimen are obtained and are proposed to a analysis purpose.

Cell Cycle Arrest in Human Monocyte Cell Line by Human Cytomegalovirus (인체거대세포바이러스에 의한 인체 단핵구세포의 세포주기 저해)

  • Jang, So-Young;Kim, Mi-Suk;Lee, Chan-Hee
    • Korean Journal of Microbiology
    • /
    • v.44 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • Monocytic cells in myeloid lineage are known for latent site of HCMV Previous studies have suggested that HCMV regulates cell cycle progression in a variety of cells, but studies in monocytic cells are limited. In this study, we attempted to understand cell cycle changes after HCMV infection in the monocytic cell lines. Flow cytometric analyses using propidium iodide revealed that the proportion of G0-G1 phase was increased and the proportion of S phase decreased in HCMV-infected THP-1 cells, but not in HL-60 cells. BrdU-incorporation assay supported that cell proliferation was inhibited in HCMV-infected THP-1 cells by inhibition of de novo DNA synthesis. Western blot analysis revealed that p21, inhibitor of cell cycle progression from G1 phase to S phase, was induced in HCMV-infected THP-1 cells but not in HL-60 cells. Thus, HCMV inhibited cell pro-liferation by arresting the cell cycle at G0-G1 phase through induction of p21 protein in promocytic THP-1 cells.