• 제목/요약/키워드: Life Prediction

검색결과 1,950건 처리시간 0.032초

경사하강법을 이용한 낸드 플래시 메모리기반 저장 장치의 고효율 수명 예측 및 예외처리 방법 (High Efficiency Life Prediction and Exception Processing Method of NAND Flash Memory-based Storage using Gradient Descent Method)

  • 이현섭
    • 융합정보논문지
    • /
    • 제11권11호
    • /
    • pp.44-50
    • /
    • 2021
  • 최근 빅데이터를 수용하기 위한 대용량 저장 장치가 필요한 엔터프라이즈 저장 시스템에서는 비용과 크기 대비 직접도가 높은 대용량의 플래시 메모리 기반 저장 장치를 많이 사용하고 있다. 본 논문에서는 엔터프라이즈 대용량 저장 장치의 신뢰도와 이용성에 직접적인 영향을 주는 플래시 메모리 미디어의 수명을 극대화 하기 위해 경사하강법을 적용한 고효율 수명 예측 방법을 제안한다. 이를 위해 본 논문에서는 불량 발생 빈도를 학습하기 위한 메타 데이터를 저장하는 매트릭스의 구조를 제안하고 메타데이터를 이용한 비용 모델을 제안한다. 또한 학습된 범위를 벗어난 불량이 발생 했을 때 예외 상황에서의 수명 예측 정책을 제안한다. 마지막으로 시뮬레이션을 통해 본 논문에서 제안하는 방법이 이전까지 플래시 메모리의 수명 예측을 위해 사용되어 온 고정 횟수 기반 수명 예측 방법과 예비 블록의 남은 비율을 기반으로 하는 수명 예측 방법 대비 수명을 극대화 할 수 있음을 증명하여 우수성을 확인했다.

추계적 열화모형에 의한 건설자재의 사용수명 예측 (Service Life Prediction for Building Materials and Components with Stochastic Deterioration)

  • 권영일
    • 품질경영학회지
    • /
    • 제35권4호
    • /
    • pp.61-66
    • /
    • 2007
  • The performance of a building material degrades as time goes by and the failure of the material is often defined as the point at which the performance of the material reaches a pre-specified degraded level. Based on a stochastic deterioration model, a performance based service life prediction method for building materials and components is developed. As a stochastic degradation model, a gamma process is considered and lifetime distribution and service life of a material are predicted using the degradation model. A numerical example is provided to illustrate the use of the proposed service life prediction method.

전동차용 방진고무스프링 특성 및 사용수명 예측 (Characteristics and Useful Life Prediction of Rubber Spring for Railway Vehicle)

  • 우창수;박현성;박동철
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.211-216
    • /
    • 2007
  • Rubber components are widely used in many application such as vibration isolators, damping, ride quality. Rubber spring is used in primary suspension system for railway vehicle. Characteristics and useful life prediction of rubber spring was very important in design procedure to assure the safety and reliability. Non-linear properties of rubber material which are described as strain energy function are important parameter to design and evaluate of rubber spring. These are determined by physical tests which are uniaxial tension, equi-biaxial tension and pure shear test. The computer simulation was executed to predict and evaluate the load capacity and stiffness for rubber spring. In order to investigate the useful life, the acceleration test were carried out. Acceleration test results changes as the threshold are used for assessment of the useful life and time to threshold value were plotted against reciprocal of absolute temperature to give the Arrhenius plot. By using the acceleration test, several useful life prediction for rubber spring were proposed.

가속열화시험에 의한 부품·소재 사용수명 예측에 관한 연구 (Service Life Prediction of Components or Materials Based on Accelerated Degradation Tests)

  • 권영일
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권2호
    • /
    • pp.103-111
    • /
    • 2017
  • Purpose: Accelerated degradation tests can speed time to market and reduce the test time and costs associated with long term reliability tests to verify the required service life of a product or material. This paper proposes a service life prediction method for components or materials using an accelerated degradation tests based on the relationships between temperature and the rate of failure-causing chemical reaction. Methods: The relationship between performance degradation and the rate of a failure-causing chemical reaction is assumed and least square estimation is used to estimate model parameters from the degradation model. Results: Methods of obtaining acceleration factors and predicting service life using the degradation model are presented and a numerical example is provided. Conclusion: Service life prediction of a component or material is possible at an early stage of the degradation test by using the proposed method.

Life Analysis and Reliability Prediction of Micro-Switches based on Life Prediction Method

  • Ji, Jung-Geon;Shin, Kun-Young;Lee, Duk-Gyu;Song, Moon-Shuk;Lee, Hi-Sung
    • International Journal of Railway
    • /
    • 제5권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Reliability means that a product maintains its initial quality and performance at a certain period of time (time, distance, cycle etc) under given condition without failure. The given conditions include both environmental condition and operating condition. Environmental condition means a common natural environment such as temperature, humidity, vibration, and working condition means an artificial environment such as voltage, current load, place for installment, and hours of use, which occurs during the life of the product. In the field of railway vehicles, it is mandatory to use a part with the proved reliability as the extension of the life of vehicle become highly necessary. But the reliable assessment method for the reliability of the part is insufficient. If the reliability of the railway vehicle parts could be assessed by using the field data, the reliability of the entire system could also be evaluated reliably. In this study, life span of micro-switch for master controller is analyzed and prediction is performed based on its field data given by an operator considering the special circumstances of railway vehicles such as the operation of a large number of trains on the same line.

Method using XFEM and SVR to predict the fatigue life of plate-like structures

  • Jiang, Zhansi;Xiang, Jiawei
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.455-462
    • /
    • 2020
  • The hybrid method using the extended finite element method (XFEM) and the forward Euler approach is widely employed to predict the fatigue life of plate structures. Due to the accuracy of the forward Euler approach is determined by a small step size, the performance of fatigue life prediction of the hybrid method is not agreeable. Instead the forward Euler approach, a prediction method using midpoint method and support vector regression (SVR) is presented to evaluate the stress intensity factors (SIFs) and the fatigue life. Firstly, the XFEM is employed to calculate the SIFs with given crack sizes. Then use the history of SIFs as a function of either number of fatigue life cycles or crack sizes within the current cycle to build a prediction model. Finally, according to the prediction model predict the SIFs at different crack sizes or different cycles. Three numerical cases composed by a homogeneous plate with edge crack, a composite plate with edge crack and center crack are introduced to verify the performance of the proposed method. The results show that the proposed method enables large step sizes without sacrificing accuracy. The method is expected to predict the fatigue life of complex structures.

열간 단조 공정의 금형 수명 평가 (Evaluation of die life during hot forging process)

  • 이현철;박태준;고대철;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

철근부식에 의한 육지 콘크리트의 잔존수명 예측 (The Prediction of Remaining Service Life of Land Concrete Due to Steel Corrosion)

  • 정우용;윤영수;송하원;변근주
    • 콘크리트학회논문집
    • /
    • 제12권5호
    • /
    • pp.69-80
    • /
    • 2000
  • This paper presents the prediction of remaining service life of the concrete due to steel corrosion caused by the following three cases; carbonation, using sea sand and using deicing salts. The assessment of initiation period was generalized considering the existing perdiction models in the literature, corrosion experiment and field assessment. To evaluate the prediction equation of rust growth, the corrosion accelerating experiments was performed. The polarization resistance was measured by potentiostat and the conversion coefficient of polarzation resistance to corrosion rate was determined by the measurement of real mass loss. Chloride content, carbonation, cover depth, relative humidity, water-cement ratio(W/C), and the use of deicing salts were taken into account and the resulting prediction equation of rust growth was proposed on the basis of these properties. The proposed equation is to predict the rust growth during any specified period of time and be effective in particular for predicting service life of concrete in the case of using sea sand.

유리 성형기의 무접점릴레이(SSR) 수명 예측장치 개발 (Development of Solid State Relay(SSR) Life Prediction Device for Glass Forming Machine)

  • 양성규;김갑순
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.46-53
    • /
    • 2022
  • This paper presents the design and manufacture of a Solid State Relay (SSR) life prediction device that can predict the lifetime of an SSR, which is a key component of a glass forming machine. The lifetime of an SSR is over when the current supplied to the relay is overcurrent (20 A or higher), and the operating time is 100,000 h or longer. Therefore, the life prediction device for the SSR was designed using DSP to accurately read the current and temperature values from the current and temperature sensors, respectively. The characteristic test of the manufactured non-contact relay life prediction device confirmed that the current and temperature were safely measured. Thus, the SSR lifetime prediction device developed in this study can be used to predict the lifetime of an SSR attached to a glass forming machine.

초고온가스로 압력용기용 Gr. 91 강의 장시간 크리프 수명 예측 방법 개선 (Improvement of Long-term Creep Life Prediction Method of Gr. 91 steel for VHTR Pressure Vessel)

  • 박재영;김우곤;;김선진;김민환
    • 한국압력기기공학회 논문집
    • /
    • 제10권1호
    • /
    • pp.64-69
    • /
    • 2014
  • Gr. 91 steel is used for the major structural components of Generation-IV reactor systems, such as a very high temperature reactor(VHTR) and sodium-cooled fast reactor(SFR). Since these structures are designed for up to 60 years at elevated temperatures, the prediction of long-term creep life is important for a design application of Gr. 91 steel. In this study, a number of creep rupture data were collected through world-wide literature surveys, and using these data, the long-term creep life was predicted in terms of three methods: the single-C method in Larson-Miller(L-M) parameter, multi-C constant method in the L-M parameter, and a modified method("sinh" equation) in the L-M parameter. The results of the creep-life prediction were compared using the standard deviation of error value, respectively. Modified method proposed by the "sinh" equation revealed better agreement in creep life prediction than the single-C L-M method.