• Title/Summary/Keyword: Life Firing Test

Search Result 21, Processing Time 0.027 seconds

Life Firing Test of 1 N-class Monopropellant Thruster Development Model -Part II: Pulse Mode Performance (1 N급 단일추진제 추력기 개발모델의 장기수명 연소시험 -Part II: 펄스모드 성능 특성)

  • Won, Su-Hee;Kim, Su-Kyum;Jun, Hyoung-Yoll;Lee, Jun-Hui;Park, Su-Hyang;Lee, Jae-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.68-74
    • /
    • 2014
  • During the life firing test of 1 N-class thruster development model, pulse mode performance and performance changes were examined. The deviation of pulse mode response time according to thruster feed pressure was relatively small and the resultant ignition delay, response time, tail-off time were 32-35 ms, 86-91 ms, 89-98 ms, respectively. For the stabilized pulse region the impulse bit revealed the outstanding reproducibility of 1.41, 1.32, 2.10% at $3{\sigma}$. During the life firing test, the impulse bit was decreased with limited amounts, therefore the pulse mode performance could be considered to be maintained. The thrust centroid was also maintained during the life firing test.

Life Firing Test of 1 N-class Monopropellant Thruster Development Model -Part I: Environmental Test and Steady State Performance (1 N급 단일추진제 추력기 개발모델의 장기수명 연소시험 -Part I: 환경시험 및 연속모드 성능 특성)

  • Won, Su-Hee;Kim, Su-Kyum;Jun, Hyoung-Yoll;Lee, Jun-Hui;Park, Su-Hyang;Lee, Jae-Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.6
    • /
    • pp.59-67
    • /
    • 2014
  • Acceptance level random vibration and life firing test for development model of 1 N-class monopropellant thruster have been performed. From the results of random vibration, the natural frequency of the dual thurst module composed of 1 N-class development model thrusters was higher than the part level requirement(>100 Hz) and the structural robustness was verified. Thrust decrease of steady sate was below 7% and thrust instability was within ${\pm}5%$ in the life firing test using over 20 kg propellant throughput. The computerized tomography for catalyst bed showed a less than 7% of catalyst loss and it revealed the design appropriateness of the current thruster development model.

Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test (마이카 고전압 커패시터의 환경시험과 가속 수명시험을 통한 신뢰성 평가)

  • Park, Seong Hwan;Ham, Young Jae;Kim, Jeong Seok;Kim, Kyoung Hun;So, Seong Min;Jeon, Min Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.270-275
    • /
    • 2019
  • Mica capacitor is being adopted for high voltage firing unit of guided weapon system because of its superior impact enduring property relative to ceramic capacitor. Reliability of localized mica high voltage capacitors was verified through environmental test like terminal strength test, humidity test, thermal shock test and accelerated life test for application to high voltage firing unit. Failure mode of mica capacitor is a decrease of insulation resistance and its final dielectric breakdown. Main constants of accelerated life model were derived experimentally and voltage constant and activation energy were 5.28 and 0.805 eV respectively. Lifetime of mica capacitor at normal use condition was calculated to be 38.5 years by acceleration factor, 496, and lifetime at accelerated condition and this long lifetime confirmed that mica high voltage capacitor could be applied for firing unit.

Case Study on the Firing Pin Fatigue Destruction of the Korean Rifle by Repeated Impact (반복충격에 의한 한국형 소총의 공이 피로파괴 사례 연구)

  • Lee, Ho-Jun;Choi, Si-Young;Shin, Tae-Sung;Seo, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.648-655
    • /
    • 2020
  • The firing pin of modern automatic rifles detonates the primer of loaded ammunition via a hammer. During this process, the firing pin receives an impact load and repetitive force throughout the life of the rifle. An endurance test of a rifle showed that the firing pin breaks prematurely at 96.26% of life. Accordingly, a case study was conducted through cause analysis and a reconstruction test. Optical microscopy and scanning electron microscopy of the broken surface of the firing pin showed that a crack began in the circumferential direction of the surface, resulting in a fatigue crack to the core after repeated impact. Crack growth and fatigue destruction occurred at the end due to the repetitive impact and was estimated using a notch. For verification, a sample that produced a 0.03mm circumferential notch was broken at 64.25% of life in the reconstruction test. A test of breakage according to the notch types showed that a 0.3mm and a 0.5mm one-side notch were broken at 66.53% and 50.76%, respectively, and a 0.03mm six-point notch was broken at 85.65%. The endurance life of a sample firing pin with a rough surface and tool mark was examined, but an approximately 381 ㎛ internal crack formed. Through this study, failure for each notch type was considered. These results show that quality control of the notch and surface roughness is essential for ensuring the reliability of a component subjected to repeated impact.

Development of Long-Life Performance Test Equipment & Evaluation Plan for Hydrazine Decomposition Catalyst (액체추진제 분해촉매 장기성능시험장치 개발 및 평가방안)

  • Kim, In-Tae;Kim, Jung-Hun;Lee, Jae-Won;Jang, Ki-Won;Yu, Myoung-Jong;Kim, Su-Kyum;Lee, Kyun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.407-412
    • /
    • 2006
  • Most of the monopropellant thrusters use catalyst for decomposing hydrazine. The thruster lifetime is determined mainly by catalyst lifetime, which can be investigated by firing tests. For the development of hydrazine decomposition catalyst, Hot-fire test to verify long-life performance of catalyst is required. This study describes the development of test equipment for long duration hot-firing and test/evaluation plan.

  • PDF

A Study on Designing Flash Suppressor for Reducing Muzzle Flash (총구화염저감용 소염기 설계에 관한 연구)

  • Lee, Joon-Ho;Chae, Je-Wook;Lee, Sung-Bae;Kim, Hyun-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.146-151
    • /
    • 2009
  • It is known that muzzle flash can be generated by the reaction between the oxygen in the air and unburned gunpowder contained in the propellant gas if a barrel is not long enough to burn gunpowder fully inside of the barrel. A hugh muzzle flash, which is a characteristic of small arms with short barrel length, disturbs a shooter in aiming at the target at night by making the shooter blind for a while and endangers the shooter's life by revealing firing position to enemies. In addition, the heat of muzzle flash can deteriorate the performance of thermal sights, which are attached to small arms for effective night combat. In this paper, flash suppressors of different shapes were designed for a newly developed 5.56mm caliber rifle with short barrel length and the performance of each flash suppressor to reduce the muzzle flash was compared by on-site test firing. Through the test firing, a highly efficient design of flash suppressor for reducing the muzzle flash was identified. The result of the paper can be referred when designing flash suppressors for small arms with short barrel length.

Long-Life Performance Test & Evaluation for Hydrazine Decomposition Catalyst (하이드라진 분해촉매 장기성능시험 및 평가)

  • Kim, In-Tae;Kim, Jung-Hun;Lee, Jae-Won;Jang, Ki-Won;Yu, Myoung-Jong;Kim, Su-Kyum;Lee, Kyun-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.110-113
    • /
    • 2007
  • For the development of hydrazine decomposition catalyst, Hot-fire test to verify performance of catalyst is required. The purpose of a long-life firing test is to demonstrate the capability of a design to perform for the maximum duration or cycles of operation. This paper describes the progress of the catalyst performance test, explains the test matrix, and presents the test results.

  • PDF

Development of Hydrazine Decomposition Catalyst for Monopropellant Thruster (단일추진제 추력기용 하이드라진 분해 촉매 개발)

  • Kim, Su-Kyum;Yu, Myoung-Jong;Lee, Kyun-Ho;Cho, Sung-June;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.101-104
    • /
    • 2009
  • KARI have been started development process of hydrazine decomposition catalyst for monopropellant thsuter from 2004 in cooperation with Chonnam National University and Hanwha Corps. Through the various trial and error, a catalyst that satisfies all the properties for space propulsion system was developed in 2009 and then the life firing test and qualification firing test was completed. In this paper, we will describe the development process of catalyst, the physical/chemical properties of final product and brief test results.

  • PDF

Feasibility Study of a Corrugated Steel Protective Structure for Ammunition Test Facility (탄약시험장의 강재 방호구조물 적용성 분석 연구)

  • Han, Jae Duk;Kim, Donghee;Kim, Sungkon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.671-679
    • /
    • 2022
  • Harmful factors such as shock waves and fragments are generated at domestic ammunition testing sites and military shell shooting training sites due to frequent shooting and explosion tests. As a result, complaints from local residents are rapidly increasing, and there is a high risk of damage to facilities and human life. The recently constructed ammunition test site built a test facility for firing artillery and rocket propulsion in a narrow area with a radius of 300 m due to site restrictions, but damage to the facility is accumulating because there is no adequate protective structure. Therefore, in this study, quantitative data on harmful factors such as noise, vibration, shock wave, and thermal effect generated between artillery firing and rocket propulsion tests were measured, and explosion pressure characteristics were analyzed to design a protective structure, and use Autodyn to protect performance. to perform verification.

A Study on Impact Analysis of the Korean Anthropometric Characteristic on Shooting (한국인의 인체 특성을 고려한 사격시 충격특성 해석)

  • Lee, J.W.;Lee, Y.S.;Choi, Y.J.;Chae, J.W.;Choi, E.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.150-153
    • /
    • 2005
  • The rifle impact of human body is affected by geometry of human for rifling. The interaction of human-rifle system influence a firing accuracy. In this paper, impact analysis of human model for standing postures with two B.C. carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Also, Because Human Natural frequency is 5-200Hz, human impact is considered during 0.2-0.005 sec. Dut to the Firng test, Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. Also, The resulrt of changin the position of the grip is dfferent from the each other. As the results, The human model of firing was built successfully.

  • PDF