• Title/Summary/Keyword: Life Cycle Energy Analysis

Search Result 318, Processing Time 0.026 seconds

New Lighting Control System for Light Devices (새로운 조명기기 점등제어 시스템)

  • In, Chi-Goog;Yoon, Dal-Hwan;Lin, Chi-Ho
    • Journal of IKEEE
    • /
    • v.15 no.4
    • /
    • pp.261-266
    • /
    • 2011
  • In this paper, new efficient lighting control system for light devices is proposed to reduce power consumption and increases LED life-cycle and heat efficiency of LED lighting module. The new proposed lighting control system for light devices divides into 4 stages according to the illuminance surrounding by measuring illuminance and apply to automatic pattern lighting algorithm. And via level check will be light up for set time by applying intersection lighting algorithm of magic square pattern forming a fully symmetrical. Experimental analysis results, shows heating value and power consumption reduced to maximum 30 percent and lifetime of LED improved to maximum 60 percent in comparison with previous lighting system so applying system to LED streetlight, stable and high energy efficiency can be acquired.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2004 and 2005 - (공기조화, 냉동 분야의 최근 연구 동향 -2004년 및 2005년 학회지 논문에 대한 종합적 고찰-)

  • Choi, Yong-Don;Kang, Yong-Tae;Kim, Nae-Hyun;Kim, Man-Hoe;Park, Kyoung-Kuhn;Park, Byung-Yoon;Park, Jin-Chul;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.1
    • /
    • pp.94-131
    • /
    • 2007
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2004 and 2005 has been done. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation of facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat, humidity was also interesting for comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing topics. Well developed CFD and flow visualization(PIV, PTV and LDV methods) technologies were widely applied for developing facilities and their systems. (2) The research trends of the previous two yews are surveyed as groups of natural convection, forced convection, electronic cooling, heat transfer enhancement, frosting and defrosting, thermal properties, etc. New research topics introduced include natural convection heat transfer enhancement using nanofluid, supercritical cooling performance or oil miscibility of $CO_2$, enthalpy heat exchanger for heat recovery, heat transfer enhancement in a plate heat exchanger using fluid resonance. (3) The literature for the last two years($2004{\sim}2005$) is reviewed in the areas of heat pump, ice and water storage, cycle analysis and reused energy including geothermal, solar and unused energy). The research on cycle analysis and experiments for $CO_2$ was extensively carried out to replace the Ozone depleting and global warming refrigerants such as HFC and HCFC refrigerants. From the year of 2005, the Gas Engine Heat Pump(GHP) has been paid attention from the viewpoint of the gas cooling application. The heat pipe was focused on the performance improvement by the parametric analysis and the heat recovery applications. The storage systems were studied on the performance enhancement of the storage tank and cost analysis for heating and cooling applications. In the area of unused energy, the hybrid systems were extensively introduced and the life cycle cost analysis(LCCA) for the unused energy systems was also intensively carried out. (4) Recent studies of various refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and of alternative refrigerants including carbon dioxide. Efficiency of various compressors and expansion devices are also dealt with for better modeling and, in particular, performance improvement. Thermoelectric module and cooling systems are analyzed theoretically and experimentally. (5) According to the review of recent studies on ventilation systems, an appropriate ventilation systems including machenical and natural are required to satisfied the level of IAQ. Also, an recent studies on air-conditioning and absorption refrigeration systems, it has mainly focused on distribution and dehumidification of indoor air to improve the performance were carried out. (6) Based on a review of recent studies on indoor environment and building service systems, it is noticed that research issues have mainly focused on optimal thermal comfort, improvement of indoor air Quality and many innovative systems such as air-barrier type perimeter-less system with UFAC, radiant floor heating and cooling system and etc. New approaches are highlighted for improving indoor environmental condition as well as minimizing energy consumption, various activities of building control and operation strategy and energy performance analysis for economic evaluation.

The Acclerated Life Test of Hard Disk In The Environment of PACS (PACS 환경에서 하드디스크의 가속 수명시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Chae, Jong-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • In this paper, we estimate the life cycle from acceleration life test about the hard disk of disk array of image storage of PACS. Webuil distribution was selected by the Anderson-Darling goodness-of-fit test with data of down time at $50^{\circ}C$ and $60^{\circ}C$. The equality test of shape parameter and scale parameter was conducted, so that the probability distribution estimated from data of down time at $50^{\circ}C$ and $60^{\circ}C$ was not statistically significant. The shape parameter was 1.0409, The characteristic life was 24603.5 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling which included the acceleration factor of temperature, and The activation energy was 0.5011 eV through arrhenius modeling. The failure analysis of the failure samples of acceleration test and the samples of market return was conducted, so that the share percentage of failure mode was detail difference but the rank of share percentage was almost same. This study suggest the test procedure of acceleration test of hard disk drive in PACS using environment, and help the life estimation at manufacture and use.

A Numerical Analysis of Heat Transfer in Bright Annealing Furnace of Stainless Steel Strip (Strainless steel strip 광휘어닐링로 내의 열전달 해석)

  • Ryou, H.S.;Jeong, Y.T.;Jang, B.L.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.4
    • /
    • pp.228-233
    • /
    • 2009
  • In order to predict the temperature distribution of stainless steel strip in Bright Annealing (BA) furnace, we performed the analysis of heat transfer and fluid flow using STAR-CCM+. The analysis model included unsteady fluid flow, heat transfer with radiation and moving grid. Two kinds of radiative properties, emissivity and reflectivity, were applied to the stainless steel strip, one is constant and the other is variable with time. As we call, the BA furnaces of stainless steel strip have two different types, muffle and no-muffle. The using of muffle type has been faced with some problems such as rising in material price and shortening of life cycle, etc. So the development of no-muffle type BA furnace is very important in order to save energy cost, lower environmental load and increase the productivity. The designed (or expected) temperature of stainless steel strip coming out of BA furnace was about $1065^{\circ}C$ while the environment temperature maintains around $1100^{\circ}C$. The result of our calculation was very close (or similar) to design temperature, and the application of radiative properties variable with time produced more accurate result than applying constant ones.

Decision Support Process Model for Energy Efficient Remodeling Projects focused on Building Envelope and Renewable-energy Systems (에너지절감형 리모델링을 위한 적정 대안 선정 프로세스 모델 - 건축물 외피 및 신재생에너지 시스템을 중심으로 -)

  • Shin, Young-su;Cho, Kyuman;Kim, Jae-youn
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.91-100
    • /
    • 2015
  • An increase in energy such as natural gas, coal, oil, has occurred to a large amounts of environment impact emissions, it is necessary to reduce in the construction industry for the energy consumption. To encourage remodeling project in developed countries of the majority, on the basis of this, remodeling project in the construction industry has grown to a large amount. Results of analysis of the research related to the advanced remodeling, analysis of the economic validity in accordance with the production and process and building elapsed years of selection alternative of remodeling there has been a problem that has not been properly reflected. In this study, a decision support model that can simultaneously choose the most cost-effective and energy-efficiency alternative. Developed process model, generates a "Remodeling Solution" that combines the renewable energy equipment and envelope system, energy performance evaluation of the application of international standards(ISO-13790, DIN V 18599), perform the economic evaluation through LCCA(Life Cycle Cost Analysis) technique, circulated evaluation and configured to output the optimal Remodeling Solution. The results of applying the model developed in the case, it was confirmed that it is possible to select a choice of cost-effective energy-saving alternative. Then, developed model through this study, it is expected to be able to help highly effective remodeling alternative to selecting by decision-makers.

Analysis of environmental benefit of wood waste recycling processes (폐목재 자원화 방법 환경편익 분석)

  • Kim, Mi Hyung;Hong, Soo Youl;Phae, Chae Gun;Koo, Ja Kong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.15-19
    • /
    • 2012
  • Wood wastes could be renewable resources by recycling as particleboard manufacturing or energy production. Particle board is the most common item of wood waste recycling and energy production from wood wastes has highlighted for energy recovery to reduce greenhouse gas generation in recent years. The aim of this study was to evaluate the environmental benefits of the processes for particle board manufacturing and energy production. The functional unit was one ton of wood wastes and the environmental impact was analyzed by life cycle assessment methodology. The result was that 112kg of carbon dioxide equivalent was produced from particle board manufacturing process and 382kg of carbon dioxide equivalent was produced from combined heat and power generation process. The concept of temporary biomass carbon storage was to applied to this study.

Importance of Preliminary Validation of Exterior Wall Thermal Resistance in the Evaluation Context of Building Energy Retrofit Projects (그린리모델링 성과 평가 관점에서 본 준공 시점 단열 성능 검증의 중요성)

  • Seungmin Lim;Soyeon Kim;Changoh Kang;Gain Kim;Jongyeon Lim
    • Land and Housing Review
    • /
    • v.15 no.2
    • /
    • pp.29-37
    • /
    • 2024
  • This study investigates the thermal conductivity and density of expanded polystyrene insulation materials collected from buildings under going energy retrofit projects. Due to the absence of initial thermal conductivity data, determining precise long-term patterns was challenging. Analysis based on design documents revealed that expanded polystyrene insulation maintained consistent performance over ten years. Notably, the thermal conductivity measurements of insulation samples of the same grade and age varied significantly. Additionally, the insulation density was found to be substantially below the standard specified in the design documents. The results of the experiment indicate that performance management during both construction and operation phases is lacking. It is crucial to apply building commissioning, which involves performance verification throughout the building's life cycle, to properly evaluate building energy performance improvements, such as building energy retrofit projects.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

Verification Experiment and Analysis for 6kW Solar Water Heating System (Part 4 : Comparing Economics and Raising Competitiveness) (6kW급 태양열 온수급탕 시스템의 실증실험 및 분석 (제4보 경제성비교 및 경쟁력강화))

  • Lee Bong Jin;Kang Chaedong;Lee Sang Ryoul;Hong Hiki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.3
    • /
    • pp.232-242
    • /
    • 2005
  • It has been recognized that solar water heating systems are economically inferior to conventional gas water-heaters and boilers using light oil as fuel in spite of having practical possibilities among other alternative energy facilities in Korea. The solar system, however, should be revaluated due to the sharp rise of oil prices recently. We have calculated the energy amount and cost through a series of research projects for the system by experiment and simulation, which lead to analyzing reliable life cycle costs. For the economic analysis, the gas water-heater and light oil boiler were taken as base cases while the solar systems implemented with these facilities were compared as alternatives. As a result, the solar system using the light oil as an auxiliary fuel surpassed the light oil boiler in economics. And a $50\%$ government subsidy for the initial cost is needed to maintain competitiveness with the gas hot-water heater. With this support, the simple payback period of the system can approach 12.8 years under $20\%$ additional curtailment of expenditure.

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.