• 제목/요약/키워드: Life Cycle Energy Analysis

Search Result 319, Processing Time 0.062 seconds

Eco-Industrial Park (EIP) Development and Key Technologies for Clean Production (청정 생산을 위한 생태산업단지 구축과 주요기술)

  • Yoo, ChangKyoo;Heo, Soon-Ki;Yoo, Dong Joon;Lee, SeungJun;Shin, Ji Na;Park, Yong Joon;Yoon, Hack Mo;Chun, Hee Dong;Moon, Jeong Ki;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.549-559
    • /
    • 2005
  • Sustainable industrial development which can minimize an ecological effect by the mankind exertion is recently interested due to an environmental contamination and a resource exhaustion problem. An eco-industrial park (EIP) is a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues, including energy, water, and materials. EIP developments which improve a production plant within an eco-friendly greenfield and design a new industrial ecosystem are accomplished recently, which can efficiently re-use the waste and resources from each company within EIP. In this review, the outside and domestic case studies of EIP and cornerstone technologies to develop the EIP, such as energy integration, waste reuse, mass flow analysis, water pinch, and life cycle assessment, are summarized.

Environmental Impact Assessment at a School Building using Input-output Table - Focused on Elementary School in Gyeonggi-do - (산업연관분석법을 이용한 학교 건물에서의 환경영향평가 - 경기지역의 초등학교를 대상으로 -)

  • Choi, Doo-Sung;Jeon, Hung-Chan;Cho, Kyun-Hyong
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.57-62
    • /
    • 2016
  • Purpose: A lot of active researches have addressed the impact of a building on global environment, but most of the researches focus on a residential building and a large office building. Hereupon, this study assessed the impact on environment quantitatively through the analysis of input materials targeting a school building. Method:This study calculated embodied energy of input materials suggested in a construction statement on a school building using the input-output analysis. This study finally carried out environmental impact assessment by applying LCIA DB shown in the preceding researches to the calculated embodied energy. Result: The analysis result revealed that the environmental impact per unit area(/$m^2$) at a school building was $4.11E-02PE{\cdot}yr$, among which Construction was found to be $3.59E-02PE{\cdot}yr$, being analyzed to account for about 87% of the total environmental impact. Also, as a result of detailed environmental impact, the impact on global warming among the total environmental impact was analyzed to be high, accounting for about 76%.

Environmental Consciousness and Environmental Preservation Behavior of Textile Producers (섬유제품 생산자의 환경의식과 환경보전행동)

  • 김용숙
    • Journal of the Korean Home Economics Association
    • /
    • v.34 no.5
    • /
    • pp.183-196
    • /
    • 1996
  • The purposes of this study were to review the effects of textiles production on the environment, and to investigate the environmental consciousness and environmental preservation behavior of textile producers. This study was conducted by reference analysis and empirical research. To develope theoretical framework of dimensions of environmental behavior, references concerned were analyzed. And for empirical study, researcher developed a questionnaire based on the free writing by producers and references. The questionnaire included problems about environmental consciousness, environmental behavior, demographic variables, and environmental variables. 135 questionnaires were used for final data analysis. ANOVA and factor analysis were used. The results were as follows: First, the level of global environmental problem consciousness was relatively high. The conscious level of water pollution caused by the waste water from textile mills was the highest, and that of desertation of mountain caused by timber cutting was the lowest. The effects of textile dyers and finishers on the environment were the highest, and that of designers were the lowest. Second, the results of reference analysis showed that the dimensions of textile producers environmental behavior were resource and energy saving, solid waste reduction, and green product production. And the results of empirical study were resource and energy saving, resource reuse or recycling, solid waste reduction, and green product production, and total variances was 62.3%. The practice was the lowest. Third, global environment problem consciousness, environment problem consciousness caused by the textile life-cycle concerned, and clothing seperate-collection or not at residing place were effective on environmental behavior, and 52.45% of environmental behavior was explained with above variables.

  • PDF

An Analysis on the Maintenance Effect of the HVAC System with On-line Management Method (공조설비의 온라인 유지관리 효과 분석)

  • Kim, Yong-Ki;Lee, Tae-Won;Kang, Sung-Ju;Woo, Nam-Sub
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.54-59
    • /
    • 2008
  • The poor maintenance and management of HVAC systems finally lead to the shortening of the life expectancy and result in the increase of operating costs and energy consumptions due to low efficiencies. Also, it is essential to try to develop ways to adequately maintain and to use the building facilities efficiently in order to preserve earth environment and the limited resource. In this study, an analysis on the maintenance and management cost for HVAC systems was carried out with the capacity of equipment. Besides, the LCC(Life Cycle Cost) based analysis was carried out to verify the effect of the doing maintenance and management. As the results, the case of the good maintenance and management is able to save LCC to 11 % than the case of the poor method.

  • PDF

The Electrode Characteristics of the Sintered AB5-type Metal Hydrogen Storage Alloy for Ni-MH Secondary Battery (Ni-MH 2차전지용 AB5계 수소저장합금의 소결에 따른 전극 특성)

  • Chang, Sang-Min;Park, Won;Choi, Seung-Jun;Noh, Hak;Choi, Jeon;Park, Choong-Nyeon
    • Journal of Hydrogen and New Energy
    • /
    • v.7 no.2
    • /
    • pp.157-164
    • /
    • 1996
  • The AB5-type metal hydride electrodes using $(LM)Ni_{4.49}Co_{0.1}Mn_{0.205}Al_{0.205}$(LM : Lanthaniumrich Mischmetal) alloy powders(${\leq}200$mesh) which were coated with 25wt% copper in an acidic bath were prepared with or without addition of 10wt% PTFE as a binder. Prior to electrochemical measurements, the electrodes were sintered at $40^{\circ}C$ for 1 and 2hrs in vacuum with Mm(mischmetal) and sponge type Ti getters. The properties such as maximum capacity, cycle life and mechanical strength of the negative electrode have been investigated. The surface analysis of the electrode was also obtained before and after charge-discharge cycling using scanning electron microscope(SEM). From the observations of electrochemical behavior, it was found that the sintered electrode shows a lower maximum discharge capacity compared with non-sintered electrode but it shows a better cycle life. For the both electrodes with or without addition of PTFE binder, the values of mechanical strength were obtained, and their values increased with increasing sintering time. However, there is little difference of discharge capacity for both electrodes.

  • PDF

Application of Real Option based Life Cycle Cost Analysis for Reflecting Operational Flexibility in Solar Heating Systems (실물옵션 기반의 LCC분석을 통한 태양열난방시스템의 운영유연성 반영 방안)

  • Choi, Ju-Yeong;Kim, Hyeong-Bin;Son, Myung-Jin;Hyun, Chang-Taek
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.4
    • /
    • pp.70-79
    • /
    • 2015
  • With the rise of the interest in a renewable system, the importance of the Life Cycle Cost Analysis(LCCA), an economic evaluation tool, has been increasing. However, there is an inevitable gap between a real cost and an estimation from LCCA because of the uncertainty of the external environment in real world. As the input variables in an analysis, such as a real discount rate and an energy cost, ares subject to change as time goes by, strategic decision on the current operating system is made depending on the real cost. Current economic evaluation approaches have treated only the fluctuation of input variables without consideration of the flexibility in operation, which has consequently led to the impairment on the reliability of LCCA. Therefore, new approach needs to be proposed to consider both the uncertainty of input variables and operational flexibility. To address this issue, the application of the Real Option to LCCA is presented in this study. Through a case analysis of LCCA of a solar heating system, the limits and current status of LCCA are identified. As a result, quantitative presentation of strategic decisions has been added in the new approach to implement the traditional approach.

Optimal Design of Cogeneration System for General Facilities Considering LCC Analysis (LCC 분석을 고려한 일반 시설물에서 소형열병합발전의 최적 설계)

  • Kang, Yul-Ho;Ku, Bon-Cheol;Hwang, Yu-Jin;Song, Jae-Do;Cheong, Seong-Ir;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.439-447
    • /
    • 2009
  • Cogeneration system produces power as well as heat recovered from waste heat during power generation process. This system has higher energy efficiency than that of the power plant. In this study the optimal design for the cogeneration system with the increase of the capacity considering life cycle cost(LCC) analysis has been performed in the general facilities such as hotels and hospitals under the assumption of electricity cost of 95 won/kWh, the initial cost of cogeneration system of 1,500,000 won!kW and the value of 0.5${\sim}$1.0 in the ratio of heat to power. The optimal ratio of cogeneration capacity divided by average electricity load of facility was found out more than 0.5 in case of electricity cost with the increase of>30%, and the percentage of $CO_2$ reduction was about 9%. The most important factors in the economic analysis of cogeneration system was found out the electrity cost and the initial cost of cogeneration system. Also the ratio of heat to power at the value of>0.5 was not affected in the economy of cogeneration system, but was very important in the $CO_2$ reduction.

Analysis of the Effect of Alternating Current Ripple on Electrical State of Health Degradation of 21700 Lithium-ion Battery (교류 리플이 21700 리튬 이온 배터리의 전기적 건강 상태 열화에 미치는 영향 분석)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.477-485
    • /
    • 2023
  • In this paper, the effect of AC ripple on the lifetime of lithium-ion batteries is experimentally analyzed. Bidirectional power conversion system(PCS) is used to increase the efficiency of energy storage systems (ESS). When connected to the grid, a current ripple with a frequency twice the grid frequency is applied to the battery due to its structure. Therefore, to analyze the effect of AC ripple on Li-ion battery aging, cycle life test are performed by applying charge/discharge profiles of DC current and DC+AC current ripple specifications. Based on the experimental results, direct current internal resistance (DCIR), incremental capacitance (IC), and surface temperature were analyzed. As a result, it is confirmed that AC ripple does not directly affect degradation and that battery degradation slows down after a certain cycle. These results can serve as a guideline for optimizing filters to reduce ripple on the battery side in applications where AC ripple occurs.

From Deep Bed Filter to Membrane Filtration: Process Intensification, Cost and Energy Considerations (입자분리를 위한 여과방식에 따른 비용-효율 분석)

  • BEN AIM, Roger;Kwon, Dae-young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.144-148
    • /
    • 2005
  • The industrial development of large scale deep bed filters has been a very important step in the process of drinking water production and more recently in the tertiary treatment of wastewater. The target of deep bed filtration is the retention is the retention of small particles generally smaller than 30 microns at relatively small concentration, generally less than 30 mg/l from natural water (surface water or aquifers) or secondary treated wastewater. The relation between the retention efficiency and the characteristics of the particles has been extensively studied experimentally and through different models of retention. During the last years the development of new technologies (fiber filter, membrane modules) lead to more intensive processes compared to conventional sand filtration. Fiber filters can combine intensification with a decrease in specific energy needed however they cannot be operated under gravity like sand filters. Membrane filters (UF or MF) are much more intensive and efficient than sand filters. The specific energy needed is not so high (about $0.1Kwh/M^3$) but is higher than sand or fiber filter. A Life Cycle Analysis (LCA) has to be made for a complete comparison between these technologies taking in account that the efficiency of particle retention obtained by membrane filters is unique.

Economic analysis of biomass torrefaction plants integrated with corn ethanol plants and coal-fired power plants

  • Tiffany, Douglas G.;Lee, Won Fy;Morey, Vance;Kaliyan, Nalladurai
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.127-146
    • /
    • 2013
  • Torrefaction technologies convert assorted biomass feedstocks into energy-concentrated, carbon neutral fuel that is economically transported and easily ground for blending with fossil coals at numerous power plants around the world without needs to retrofit. Utilization of torrefied biomass in conventional electric generating units may be an increasingly attractive alternative for electricity generation as aging power plants in the world need to be upgraded or improved. This paper examines the economic feasibility of torrefaction in different scenarios by modeling torrefaction plants producing 136,078 t/year (150,000 ton/year) biocoal from wood and corn stover. The utilization of biocoal blends in existing coal-fired power plants is modeled to determine the demand for this fuel in the context of emerging policies regulating emissions from coal in the U.S. setting. Opportunities to co-locate torrefaction facilities adjacent to corn ethanol plants and coal-fired power plants are explored as means to improve economics for collaborating businesses. Life cycle analysis was conducted in parallel to this economic study and was used to determine environmental impacts of converting biomass to biocoal for blending in coal-fired power plants as well as the use of substantial flows of off-gasses produced in the torrefaction process. Sensitivity analysis of the financial rates of return of the different businesses has been performed to measure impacts of different factors, whether input prices, output prices, or policy measures that render costs or rewards for the businesses.