• Title/Summary/Keyword: Life Cycle Design

Search Result 1,161, Processing Time 0.026 seconds

Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost

  • Eldin, Mohamed Nour;Kim, Jaegoo;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.633-646
    • /
    • 2018
  • This study investigated the seismic performance of a hybrid damper composed of a steel slit plate and friction pads, and an optimum retrofit scheme was developed based on life cycle cost. A sample hybrid damper was tested under cyclic loading to confirm its validity as a damping device and to construct its nonlinear analysis model. The effectiveness of the optimum damper distribution schemes was investigated by comparing the seismic fragility and the life cycle costs of the model structure before and after the retrofit. The test results showed that the damper behaved stably throughout the loading history. Numerical analysis results showed that the slit-friction hybrid dampers optimally distributed based on life cycle cost proved to be effective in minimizing the failure probability and the repair cost after earthquakes.

A Framework for Analyzing the Life Cycle Value of a Product in Conceptual Design (개념설계 단계에서의 제품 라이프사이클 가치분석을 위한 프레임워크 개발)

  • Gwak Min-Jeong;Hong Yu-Seok;Jo Nam-Uk
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.1832-1839
    • /
    • 2006
  • 제품의 개념설계 단계는 제품의 주요특성과 라이프 사이클 전반에서 발생하는 Life Cycle Cost(LCC)의 대부분을 결정하는 중요한 단계이다. 이에 따라 개념설계 단계에서의 Life Cycle Cost Analysis(LCCA)의 필요성이 강조되고 있다. 그러나 LCCA는 제품의 경제성과 사용성, 친환경성 사이에서의 합리적인 의사결정을 지원하기에 한계가 있다. 본 논문은 개념설계 단계에서의 새로운 의사결정지원도구로서 기업 관점의 제품 라이프사이클 기업 가치(LCCV)분석 프레임워크를 제안하고, 그 핵심모듈인 기업 비용 예측모델 (LCCCEM)을 소개한다. 이 프레임워크를 통해 기업이 제품의 경제성과 시장성, 친환경성 사이에서 보다 전략적이고 합리적인 의사결정을 수행하도록 지원할 수 있을 것으로 기대한다.

  • PDF

A Study on the Development of Life Cycle Cost Analysis Methodology in HVAC system for Decision Maker (의사 결정자를 위한 HVAC 시스템의 LCC 분석 방법론 개발에 관한 연구)

  • Jung, Soon-Sung
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.55-63
    • /
    • 2004
  • The purpose of this study is to development of life cycle cost analysis methodology of HVAC system for decision maker. The results of this study are as follows; maintenance/management, equipment construction, planning/design, and demolition/sell phases (1) To develop the cost breakdown structure for LCC in HVAC system, this study apply the method of additional pertinent level, title, CBS number, block number and variable index. (2) LCC analysis order of HVAC system compose four phase. (3) Life cycle costing influence diagram can bring us to make the most efficient decision through a visual graphical diagram that is shown relationship among variables and that decision maker traces easily from life cycle cost analysis situation.

Life Cycle Cost Breakdown Structure Development of Buildings through Delphi Analysis

  • Jeong, Jae-Hyuk;Shin, Han-Woo;Ryu, Han-Guk;Kim, Gwang-Hee;Kim, Tae-Hui
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.5
    • /
    • pp.528-538
    • /
    • 2012
  • With domestic construction projects becoming bigger, more specialized and more advanced, the construction industry is striving to improve quality and quantity, and is diversifying functions and shapes. Nevertheless, the process of a construction project causes problems when we estimate construction price, because the cost breakdown structures are different in each step. The primary aim of this study was to estimate building life cycle cost using the Delphi method. The cost breakdown structure for life cycle cost was classified into planning, design, construction, maintenance and waste disposal, and each detailed classification was determined by estimating life cycle cost. Moreover, the developed cost breakdown structure is verified by consulting with experts to secure objectivity and validity.

Low Cycle Fatigue Life Prediction of HSLA Steel Using Total Strain Energy Density (전변형률 에너지밀도를 이용한 고강도 저 합금강의 저주기 피로수명 예측)

  • Kim, Jae-Hoon;Kim, Duck-Hoi
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.166-175
    • /
    • 2002
  • Low cycle fatigue tests are performed on the HSLA steel that be developed for a submarine material. The relation between strain energy density and numbers of cycles to failure is examined in order to predict the low cycle fatigue life of HSLA steel. The cyclic properties are determined by a least square fit techniques. The life predicted by the strain energy method is found to coincide with experimental data and results obtained from the Coffin-Manson method. Also the cyclic behavior of HSLA steel is characterized by cyclic softening with increasing number of cycle at room temperature. Especially, low cycle fatigue characteristics and microstructural changes of HSLA steel are investigated according to changing tempering temperatures. In the case of HSLA steel, the $\varepsilon$-Cu is farmed in $550^{\circ}C$ of tempering temperature and enhances the low cycle fatigue properties.

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

A Study on the Environment-Friendly Design Expressed in Fashion -Focused on the Korean Designer′s Work since 1990- (패션에 표현된 환경친화적 디자인의 특성 -1990년대 이후의 국내 디자이너 작품을 중심으로-)

  • 김문숙;최나영
    • The Research Journal of the Costume Culture
    • /
    • v.6 no.2
    • /
    • pp.163-180
    • /
    • 1998
  • The purpose of this study is to investigate the main characteristics of the environment-friendly design expressed in Koran fashion. Environment-friendly design can be categorized into choice of material, extension of products life cycle, and recycling design. In this study, Korean fashion designers can be found having the conciousness of environment for fashion design since 1990. First, in choice of material, the designers used Natural fibers which are cotton, linen, wool, and etc, and used natural dyes. Some of the designers have moved from using real fur to using fake fur for animal welfare. But fake furs produced from synthetic or regenerated fibers have the environmental problems during textile production processes. Some of the designers used fake leather made from the skins of an edible fish which are otherwise going to waste. Secondly, Design for extension of products life cycle can economize the resources and energy. Design for extension of products life cycle are classified into reversible clothing, many function clothing, modular style, patina clothing, simple style, and layered look. Finally, recycling design are classified into recycling of daily necessaries and expression techniques of recycling design which are designer's works used patchwork, mash techniques, and handmade of knits or buttonhole stitch.

  • PDF

The Effect Analysis of Reducing Carbon Emission by Design Parameter Change and Material Properties (변수 변경 및 재료적 특성에 따른 철골 구조물의 탄소 배출량 절감 효과 분석)

  • Song, Chang-Hyun;Jang, Arum;Ju, Young K.
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.3
    • /
    • pp.105-113
    • /
    • 2023
  • The study used the whole-life carbon assessment method to conduct a thorough carbon-neutral evaluation of a standard steel structure. To further assess carbon emissions, 11 design-changed models were evaluated, with changes made to the span between beams and columns. The results of the carbon emission assessment showed savings of approximately 13.1% by implementing the stage of the beyond life cycle. Additionally, the evaluation of carbon emissions through design changes revealed a difference of up to 42.2%. These findings confirmed that recycling and structural design changes can significantly reduce carbon emissions by up to 48.6%, making it an effective means of achieving carbon neutrality. It is therefore necessary to apply the stage of beyond life cycle and structural change to reduce carbon emissions.

Design of Technical Information System for Naval Engineering (조함기술정보체계 설계에 관한 연구)

  • 심이섭
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.2
    • /
    • pp.121-127
    • /
    • 2004
  • The objective of this study is to design the technical information system for naval engineering (named TISNE). As the basic concept of the system, CALS (Continuous Acquisition and Life-cycle Support) and KMS(Knowledge Management System) were considered for the management and sharing of standardized digital information throughout the life-cycle of naval ship. To define the system components and their functionalities, the processes of naval ship design and construction were reviewed. Also web-based system prototype and the graphical user interlaces were designed and implemented.

A Life Cycle Cost Comparison of Low-pressure Sodium Lamp and Fluorescent Lamp for Tunnel Lighting

  • Lee, Young-Q.
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.59-62
    • /
    • 2004
  • The number of tunnel has fast increased with the rapid expansion of highway network. Tunnel should be designed to provide for drivers both safety and pleasant driving conditions. In this perspective, the design for tunnel lightning is very important in order to provide its safety, pleasantness, and cost-efficiency of maintenance, all of which should be considered and analyzed for a better tunnel lighting. This paper attempts to compare the low-pressure sodium lamp, which have usually been used for tunnel lighting, with the fluorescent lamp, which we consider as an alternative for the former. In an effort to determine the number of lamps to meet the required illuminance in the tunnel, this research employs a simulation technique which would allow us to conjecture, with the aid of basic model, the life cycle cost for illumination per each tunnel. This analysis is expected to provide a basic method and related information for tunnel development and design.