• Title/Summary/Keyword: License plate location

Search Result 29, Processing Time 0.029 seconds

Distortion Invariant Vehicle License Plate Extraction and Recognition Algorithm (왜곡 불변 차량 번호판 검출 및 인식 알고리즘)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • Automatic vehicle license plate recognition technology is widely used in gate control and parking control of vehicles, and police enforcement of illegal vehicles. However inherent geometric information of the license plate can be transformed in the vehicle images due to the slant and the sunlight or lighting environment. In this paper, a distortion invariant vehicle license plate extraction and recognition algorithm is proposed. First, a binary image reserving clean character strokes can be achieved by using a DoG filter. A plate area can be extracted by using the location of consecutive digit numbers that reserves distortion invariant characteristic. License plate is recognized by using neural networks after geometric distortion correction and image enhancement. The simulation results of the proposed algorithm show that the accuracy is 98.4% and the average speed is 0.05 seconds in the recognition of 6,200 vehicle images that are obtained by using commercial LPR system.

A License Plate Recognition System Robust to Vehicle Location and Viewing Angle (영상 내 차량의 위치 및 촬영 각도에 강인한 차량 번호판 인식 시스템)

  • Hong, Sungeun;Hwang, Sungsoo;Kim, Seongdae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.12
    • /
    • pp.113-123
    • /
    • 2012
  • Recently, various attempts have been made to apply Intelligent Transportation System under various environments and conditions. Consequently, an accurate license plate recognition regardless of vehicle location and viewing angle is required. In this paper, we propose a novel license plate recognition system which exploits a) the format of license plates to remove false candidates of license plates and to extract characters in license plates and b) the characteristics of Hangul for accurate character recognition. In order to eliminate false candidates of license plates, the proposed method first aligns the candidates of license plates horizontally, and compares the position and the shape of objects in each candidate with the prior information of license plates provided by Korean Ministry of Construction & Transportation. The prior information such as aspect ratio, background color, projection image is also used to extract characters in license plates accurately applying an improved local binarization considering luminance variation of license plates. In case of recognizing Hangul in license plates, they are initially grouped according to their shape similarity. Then a super-class method, a hierarchical analysis based on key feature points is applied to recognize Hangul accurately. The proposed method was verified with high recognition rate regardless of background image, which eventually proves that the proposed LPR system has high performance regardless of the vehicle location or viewing angle.

A Vehicle License Plate Recognition Using Intensity Variation and Geometric Pattern Vector (명암도 변화값과 기하학적 패턴벡터를 이용한 차량번호판 인식)

  • Lee, Eung-Ju;Seok, Yeong-Su
    • The KIPS Transactions:PartB
    • /
    • v.9B no.3
    • /
    • pp.369-374
    • /
    • 2002
  • In this paper, we propose the react-time car license plate recognition algorithm using intensity variation and geometric pattern vector. Generally, difference of car license plate region between character and background is more noticeable than other regions. And also, car license plate region usually shows high density values as well as constant intensity variations. Based on these characteristics, we first extract car license plate region using intensity variations. Secondly, lightness compensation process is performed on the considerably dark and brightness input images to acquire constant extraction efficiency. In the proposed recognition step, we first pre-process noise reduction and thinning steps. And also, we use geometric pattern vector to extract features which independent on the size, translation, and rotation of input values. In the experimental results, the proposed method shows better computation times than conventional circular pattern vector and better extraction results regardless of irregular environment lighting conditions as well as noise, size, and location of plate.

A Method of License Plate Location and Character Recognition based on CNN

  • Fang, Wei;Yi, Weinan;Pang, Lin;Hou, Shuonan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3488-3500
    • /
    • 2020
  • At the present time, the economy continues to flourish, and private cars have become the means of choice for most people. Therefore, the license plate recognition technology has become an indispensable part of intelligent transportation, with research and application value. In recent years, the convolution neural network for image classification is an application of deep learning on image processing. This paper proposes a strategy to improve the YOLO model by studying the deep learning convolutional neural network (CNN) and related target detection methods, and combines the OpenCV and TensorFlow frameworks to achieve efficient recognition of license plate characters. The experimental results show that target detection method based on YOLO is beneficial to shorten the training process and achieve a good level of accuracy.

License-Plate Extraction from Parking Regulation Images using Intensity Vector and Composite Color (복합 색상과 명암 벡터를 이용한 주차 단속 영상에서의 번호판 추출)

  • 권숙연;전병환
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.47-55
    • /
    • 2003
  • In this paper, we propose a new approach to detect peculiar features of license plates using intensity vector and composite color component in order to extract license plates from parking regulation images, which is captured in various locations around the front or the rear of cars at various times and places, and in which complex background is included. We fundamentally use both features that intensity value repeats frequently increasing and decreasing because intensity is obviously different at numerics and background, and that color is uniform in the area of license plates. First, we search each row at regular intervals starting from the bottom of a license-plate image, and we set up a rough region for a certain zone in which tile sign of intensity vector changes frequently enough and color of license plate is detected enough, assuming it as a candidate location of a license plate. And then, we extract an elaborate area of a license plate by projecting vertical edges horizontally and vertically. Here, type of cars, such as the urinate and the public, is easily classified according to the color of extracted plates. We used 200 actual regulation images, which are captured at various times and places, to evaluate the performance of the proposed method. As a result, the proposed method showed extraction rate of 96%, which is 9% higher than the previous method using only intensity vector.

Learning-based Detection of License Plate using SIFT and Neural Network (SIFT와 신경망을 이용한 학습 기반 차량 번호판 검출)

  • Hong, Won Ju;Kim, Min Woo;Oh, Il-Seok
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.187-195
    • /
    • 2013
  • Most of former studies for car license plate detection restrict the image acquisition environment. The aim of this research is to diminish the restrictions by proposing a new method of using SIFT and neural network. SIFT can be used in diverse situations with less restriction because it provides size- and rotation-invariance and large discriminating power. SIFT extracted from the license plate image is divided into the internal(inside class) and the external(outside class) ones and the classifier is trained using them. In the proposed method, by just putting the various types of license plates, the trained neural network classifier can process all of the types. Although the classification performance is not high, the inside class appears densely over the plate region and sparsely over the non-plate regions. These characteristics create a local feature map, from which we can identify the location with the global maximum value as a candidate of license plate region. We collected image database with much less restriction than the conventional researches. The experiment and evaluation were done using this database. In terms of classification accuracy of SIFT keypoints, the correct recognition rate was 97.1%. The precision rate was 62.0% and recall rate was 50.2%. In terms of license plate detection rate, the correct recognition rate was 98.6%.

Vehicle Information Recognition and Electronic Toll Collection System with Detection of Vehicle feature Information in the Rear-Side of Vehicle (차량후면부 차량특징정보 검출을 통한 차량정보인식 및 자동과금시스템)

  • 이응주
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • In this paper, we proposed a vehicle recognition and electronic toll collection system with detection and classification of vehicle identification mark and emblem as well as recognition of vehicle license plate to unman toll fee collection system or incoming/outcoming vehicles to an institution. In the proposed algorithm, we first process pre-processing step such as noise reduction and thinning from the rear side input image of vehicle and detect vehicle mark, emblem and license plate region using intensity variation informations, template masking and labeling operation. And then, we classify the detected vehicle features regions into vehicle mark and emblem as well as recognize characters and numbers of vehicle license plate using hybrid and seven segment pattern vector. To show the efficiency of the proposed algorithm, we tested it on real vehicle images of implemented vehicle recognition system in highway toll gate and found that the proposed method shows good feature detection/classification performance regardless of irregular environment conditions as well as noise, size, and location of vehicles. And also, the proposed algorithm may be utilized for catching criminal vehicles, unmanned toll collection system, and unmanned checking incoming/outcoming vehicles to an institution.

  • PDF

Vehicle Recognition with Recognition of Vehicle Identification Mark and License Plate (차량 식별마크와 번호판 인식을 통한 차량인식)

  • Lee Eung-Joo;Kim Sung-Jin;Kwon Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1449-1461
    • /
    • 2005
  • In this paper, we propose a vehicle recognition system based on the classification of vehicle identification mark and recognition of vehicle license plate. In the proposed algorithm, From the input vehicle image, we first simulate preprocessing procedures such as noise reduction, thinning etc., and detect vehicle identification mark and license plate region using the frequency distribution of intensity variation. And then, we classify extracted vehicle candidate region into identification mark, character and number of vehicle by using structural feature informations of vehicle. Lastly, we recognize vehicle informations with recognition of identification mark, character and number of vehicle using hybrid and vertical/horizontal pattern vector method. In the proposed algorithm, we used three properties of vehicle informations such as Independency property, discriminance property and frequency distribution of intensity variation property. In the vehicle images, identification mark is generally independent of the types of vehicle and vehicle identification mark. And also, the license plate region between character and background as well as horizontal/vertical intensity variations are more noticeable than other regions. To show the efficiency of the propofed algorithm, we tested it on 350 vehicle images and found that the propofed method shows good Performance regardless of irregular environment conditions as well as noise, size, and location of vehicles.

  • PDF

An Implementation of Mobile Platform using Location Data Index Techniques (위치 데이터 인덱스 기법을 적용한 모바일 플랫폼구현)

  • Park, Chang-Hee;Kang, Jin-Suk;Sung, Mee-Young;Park, Jong-Song;Kim, Jang-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.11
    • /
    • pp.1960-1972
    • /
    • 2006
  • In this thesis, GPS and the electronic mapping were used to realize such a system by recognizing license plate numbers and identifying the location of objects that move at synchronous times with simulated movement in the electronic map. As well, throughout the study, a camera attached to a PDA, one of the mobile devices, automatically recognized and confirmed acquired license plate numbers from the front and back of each cu. Using this mobile technique in a wireless network searches for specific plate numbers and information about the location of the car is transmitted to a remote sewer. The use of such a GPS-based system allows for the measurement of topography and the effective acquisition of a car's location. The information is then transmitted to a central controlling center and stored as text to be reproduced later in the form of diagrams. Getting positional information through GPS and using image-processing with a PDA makes it possible to estimate the correct information of a car's location and to transmit the specific information of the car to a control center simultaneously, so that the center will get information such as type of the cu, possibility of the defects that a car might have, and possibly to offer help with those functions. Such information can establish a mobile system that can recognize and accurately trace the location of cars.

A Study of Location Based Services Using Location Data Index Techniques (위치데이터인덱스 기법을 적용한 위치기반서버스에 관한 연구)

  • Park Chang-Hee;Kim Jang-Hyung;Kang Jin-Suk
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.5
    • /
    • pp.595-605
    • /
    • 2006
  • In this thesis, GPS and the electronic mapping were used to realize such a system by recognizing license plate numbers and identifying the location of objects that move at synchronous times with simulated movement in the electronic map. As well, throughout the study, a camera attached to a PDA, one of the mobile devices, automatically recognized and confirmed acquired license plate numbers from the front and back of each car. Using this mobile technique in a wireless network, searches for specific plate numbers and information about the location of the car is transmitted to a remote server. The use of such a GPS-based system allows for the measurement of topography and the effective acquisition of a car's location. The information is then transmitted to a central controlling center and stored as text to be reproduced later in the form of diagrams. Getting positional information through GPS and using image-processing with a PDA makes it possible to estimate the correct information of a car's location and to transmit the specific information of the car to a control center simultaneously, so that the center will get information such as type of the car, possibility of the defects that a car might have, and possibly to offer help with those functions. Such information can establish a mobile system that can recognize and accurately trace the location of cars.

  • PDF