• Title/Summary/Keyword: Library Identity

Search Result 214, Processing Time 0.027 seconds

Genetic diversity and phylogenetic relationship of Angus herds in Hungary and analyses of their production traits

  • Judit Marton;Ferenc Szabo;Attila Zsolnai;Istvan Anton
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.184-192
    • /
    • 2024
  • Objective: This study aims to investigate the genetic structure and characteristics of the Angus cattle population in Hungary. The survey was performed with the assistance of the Hungarian Hereford, Angus, Galloway Association (HHAGA). Methods: Genetic parameters of 1,369 animals from 16 Angus herds were analyzed using the genotyping results of 12 microsatellite markers with the aid of PowerMarker, Genalex, GDA-NT2021, and STRUCTURE software. Genotyping of DNA was performed using an automated genetic analyzer. Based on pairwise identity by state values of animals, the Python networkx 2.3 library was used for network analysis of the breed and to identify the central animals. Results: The observed numbers of alleles on the 12 loci under investigation ranged from 11 to 18. The average effective number of alleles was 3.201. The overall expected heterozygosity was 0.659 and the observed heterozygosity was 0.710. Four groups were detected among the 16 Angus herds. The breeders' information validated the grouping results and facilitated the comparison of birth weight, age at first calving, number of calves born and productive lifespan data between the four groups, revealing significant differences. We identified the central animals/herd of the Angus population in Hungary. The match of our group descriptions with the phenotypic data provided by the breeders further underscores the value of cooperation between breeders and researchers. Conclusion: The observation that significant differences in the measured traits occurred among the identified groups paves the way to further enhancement of breeding efficiency. Our findings have the potential to aid the development of new breeding strategies and help breeders keep the Angus populations in Hungary under genetic supervision. Based on our results the efficient use of an upcoming genomic selection can, in some cases, significantly improve birth weight, age at first calving, number of calves born and the productive lifespan of animals.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Molecular Characterization of a Chinese Cabbage cDNA Encoding Thioredoxin-h that is Predominantly Expressed in Flowers

  • Lee, Seung-Sik;Lee, Kyun-Oh;Jung, Bae-Gyo;Chi, Yong-Hun;Yoo, Ji-Young;Lee, Ji-Yeun;Lee, Jung-Ro;Park, Soo-Kwon;Kang, Soon-Suk;Jang, Ho-Hee;Lee, Sang-Yeol
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.334-341
    • /
    • 2001
  • Even though three isotypes of thioredoxins (-f, -m and -h types) have been identified in a variety of plant cells, there are only a few reports on thioredoxin-h that were recently identified. In this study, a cDNA encoding a h-type of thioredoxin was isolated from a cDNA library of Chinese cabbage, and named here CTrx-h. An open reading frame of the gene contained a polypeptide of 133 amino acids with a conserved active center, WCGPC, which appeared in all of the thioredoxin proteins. A deduced amino acid sequence of the CTrx-h showed the highest sequence identity with those of Arabidopsis thioredoxin-h2 (75.2%) and thioredoxin-h5 (46.6%) proteins, but it shared a low sequence homology to other isotypes of plant thioredoxinm and thioredoxin-f. The CTrx-h protein that is expressed in E. coli represented not only an insulin reduction activity, but also electron transferring activity from NADPH to thioredoxin-dependent peroxidase. A genomic Southern blot analysis using the cDNA insert of CTrx-h revealed that the gene consisted of a small multigene family in Chinese cabbage genome. On the contrary to other thioredoxin-h proteins that were widely distributed in most tissues of the plant, the CTrx-h was predominantly expressed in flowers. The expression was very low in other tissues. The data of the Northern blot analysis suggests that the CTrx-h may have other functions in flower development or differentiation, in addition to its defensive role.

  • PDF

Cloning and Characterization of a Novel Mannanase from Paenibacillus sp. BME-14

  • Fu, Xiaoyu;Huang, Xiaoluo;Liu, Pengfu;Lin, Ling;Wu, Gaobing;Li, Chanjuan;Feng, Chunfang;Hong, Yuzhi
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.518-524
    • /
    • 2010
  • A mannanase gene (man26B) was obtained from a sea bacterium, Paenibacillus sp. BME-14, through the constructed genomic library and inverse PCR. The gene of man26B had an open reading frame of 1,428 bp that encoded a peptide of 475- amino acid residues with a calculated molecular mass of 53 kDa. Man26B possessed two domains, a carbohydrate binding module (CBM) belonging to family 6 and a family 26 catalytic domain (CD) of glycosyl hydrolases, which showed the highest homology to Cel44C of P. polymyxa (60% identity). The optimum pH and temperature for enzymatic activity of Man26B were 4.5 and $60^{\circ}C$, respectively. The activity of Man26B was not affected by $Mg^{2+}$ and $Co^{2+}$, but was inhibited by $Hg^{2+},\;Ca^{2+},\;Cu^{2+},\;Mn^{2+},\;K^+,\;Na^+$, and $\beta$-mercaptoethanol, and slightly enhanced by $Pb^{2+}$ and $Zn^{2+}$. EDTA did not affect the activity of Man26B, which indicates that it does not require divalent ions to function. Man26B showed a high specific activity for LBG and konjac glucomannan, with $K_m,\;V_{max}$, and $k_{cat}$ values of 3.80 mg/ml, 91.70 ${\mu}mol$/min/mg protein, and 77.08/s, respectively, being observed when LBG was the substrate. Furthermore, deletion of the CBM6 domain increased the enzyme stability while enabling it to retain 80% and 60% of its initial activity after treatment at $80^{\circ}C$ and $90^{\circ}C$ for 30 min, respectively. This finding will be useful in industrial applications of Man26B, because of the harsh circumstances associated with such processes.

Calmodulin of Olive Flounder Paralichthys olivaceus : Cloning and Expression Analysis

  • Hong, Gyeong-Eun;Kong, Hee Jeong;Nam, Bo-Hye;Kim, Young-Ok;Kim, Woo-Jin;Lee, Sang-Jun;Choi, Tae-Jin
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.4
    • /
    • pp.234-237
    • /
    • 2007
  • Calmodulin (CaM) is a $Ca^{2+}$-binding protein essential for biological functions mediated through $Ca^{2+}$-dependent mechanism. A cDNA clone for CaM was isolated from a cDNA library of olive flounder Paralichthys olivaceus. The CaM cDNA concists of 782 bp and encodes a polypeptide of 149 amino acids with four $Ca^{2+}$-binding motifs EF-hands (EF-I, EF-II, EF-III, and EF-IV). The deduced amino acid sequence of CaM shows 97-100% amino acid sequence identity to other CaM sequences. Semi-quantitative PCR analysis revealed that the CaM transcription was began during early development and the CaM mRNA is expressed highly in brain and intestine, and moderately in kidney, gill, and eye of healthy olive flounder. Taken together, CaM may be necessary for early olive flounder development and that it may have a part in homeostasis.

  • PDF

Cloning of Gene Fragment having Homology with the Polypetide Chymotrypsin Inhibitor from the Potato Proteinase Inhibitor II Gene and Its Expression in E. coli. (감자 단백질 분해효소 억제제-II 유전자로부터의 폴리펩타이드 카이모트립신 저해제와 homology가 있는 유전자단편의 클로닝 및 대장균에서의 발현)

  • Jung, Jin;Park, Sang-Gyu
    • Applied Biological Chemistry
    • /
    • v.38 no.5
    • /
    • pp.382-386
    • /
    • 1995
  • The potato proteinase inhibitor II (PI-II) protein contains chymotrypsin and trypsin inhibitory site. Among several PI-II genes isolated from genomic library, amino acid sequence deduced from PI-IIT gene has 84% identity with that of the polypeptide chymotrypsin inhibitor (PCI). Therefore a gene fragment having homology with the PCI was cloned into a vector using polymerase chain reaction(PCR) from the potato proteinase inhibitor IIT gene. Two different primers were utilized for cloning; primer A contains NdeI restriction site and 30 nucleotides, which has AUG N-terminal methionine codon, primer B contains BclI restriction site and 28 nucleotides, which has TAG translation stop codon. After PCR, about 160 bp-long DNA fragment was cloned into pRT146, derivative of pUC118, and sequenced. The sequenced NdeI/BclI fragment was moved to pET3a, containing bacteriophage T7 promoter and terminator. The expressed proteins in E. coli BL2l(DE3) were determined on a polyacrylamide gel containing sodium dodecyl sulfate. The expected size of protein deduced from the sequenced gene fragment is about 6,500 dalton whose size was similar to the IPTG-induced protein (6,000 dalton) on a gel. However the expression level was much lower than expected.

  • PDF

Molecular Cloning, Sequence Analysis, and in Vitro Expression of Flavanone 3β-Hydroxylase from Gypsophila paniculata (안개초(Gyposphila paniculata)로부터 Flavanone 3β-Hydroxylase 유전자의 분리 및 분석)

  • Min, Byung-Whan
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.85-91
    • /
    • 2006
  • Flavanone 3$\beta$-hydroxylase (FHT) is an enzyme acting in the central part of the flavonoid biosynthesis pathway. FHT catalyses the hydroxylation of flavanone to dihydroflavonols in the anthocyanin pathway. In this paper we describe the cloning and expression of the genes encoding the flavonoid-biosynthetic enzyme FHT in Gypsophila paniculata L. A heterologous cDHA probe from Dianthus cavophyllus was used to isolate FHT-encoding cDHA clones from Gypsophila paniculata L.. Inspection of the 1471 bp long sequence revealed an open reading frame 1047 bp, including a 190 bp 5' leader region and 288 bp 3' untranslated region. Comparison of the coding region of this FHT cDHA sequence including the sequences of Arabidopsis thaliana, Citrus sinensis, Dianthus caryophyllus, Ipomoea batatas, Matthiola incana, Nierembergia sp, Petunia hybrida, Solanum tuberosum, Vitis vinifera reveals a identity higher than 69% at the nucleotide level. The function of this nucleotide sequences were verified by comparison with amino acid sequences of the amino-terminus and tryptic peptides from purified plant enzyme, by northern blotting with mRHA from wild type and mutant plants, by in vitro expression yielding and enzymatically active hydroxylase, as indicated by the small dihydrokaempferol peak. Genomic southern blot analysis showed the presence of only one gene for FHT in Gypsophila paniculata.

New Paradigm in exhibition organization at the National Museum of Contemporary Art ('연구 업무 전담제'를 통해 살펴보는 국립현대미술관 전시 기획의 새로운 패러다임)

  • Choi, Eun-Ju
    • The Journal of Art Theory & Practice
    • /
    • no.3
    • /
    • pp.67-84
    • /
    • 2005
  • Since the evaluation of its intellectual activities and abilities is done by curator's capabilities, planning exhibition is very important as the final result achieved by their own knowledge, information, and research. ARPA(Advanced Research Project on Arts) is suggested as the system which enables curators responding simultaneously to the society in the times, based on its special characteristics. If this system settles well, which means that the curators at NMCA(National Museum of Contemporary Art, Korea) play their roles as the professionals in each of their fields, the goal of consolidating the status of museum as the representative national museum, and building up competent department of curators, will be achieved at the same time. To clarify above, the curators set up the various assignments of research about the types of arts such as painting, Korean painting, sculpture, installation, new-media, design, craft, photogarphy, architecture, etc. And they establish the art objects classified by the regions, such as the Northern American, Southern American, European, Asian, and other Third World countries. They elaborate art objects more on the history, the work, the artist, and the issue of contemporary art. Furthermore, when the curators devote deeper study to those research subjects, they can have the opportunities to design an exhibition upon the research. Today, the museum of art is 'The Place for Communication and Encounter', it is regarded important to share the aesthetical, creative values with current artists, and to understand mutually with the spectators. It is needed to improve the curator's work, in order to meet the demands of the times and even to advance. Because the form of 'exhibition' is the tool that reveals the identity NMCA aiming at, the motivation, the development, and the realization should be leaded by the curators, who are the mainstream of the museum. ARPA is a system for identifying the exhibition like mentioned above. The main purpose of this system is to produce synergy effect, having the researching, collecting work in liaison with planning exhibition. ARPA will be able to improve the quality of exhibition through the way of developing the exhibition, passing through the stable process in the long run. So far, I have referred to a new paradigm of the exhibition design at NMCA via ARPA. Yet, there still remain missions in reality, such as analyzing the previous exhibition and reshuffling personnel and system, which should be done. When these matters settled, these plans would be suggested practically. At this point, it is the most significant that NMCA is attempting to let others aware of the importance of exhibition planning based on research. when the ARPA and exhibition planning is conjoined together successfully, the competent exhibition will be achieved, which can offer a meaningful exhibition to the art world, strengthen infra structure thru exchanging with public museum in the region, and eventually, establish a network with museum in foreign countries.

  • PDF

Generation of single stranded DNA with selective affinity to bovine spermatozoa

  • Vinod, Sivadasan Pathiyil;Vignesh, Rajamani;Priyanka, Mani;Tirumurugaan, Krishnaswamy Gopalan;Sivaselvam, Salem Nagalingam;Raj, Gopal Dhinakar
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1579-1589
    • /
    • 2021
  • Objective: This study was conducted to generate single stranded DNA oligonucleotides with selective affinity to bovine spermatozoa, assess its binding potential and explore its potential utility in trapping spermatozoa from suspensions. Methods: A combinatorial library of 94 mer long oligonucleotide was used for systematic evolution of ligands by exponential enrichment (SELEX) with bovine spermatozoa. The amplicons from sixth and seventh rounds of SELEX were sequenced, and the reads were clustered employing cluster database at high identity with tolerance (CD-HIT) and FASTAptamer. The enriched nucleotides were predicted for secondary structures by Mfold, motifs by Multiple Em for Motif Elicitation and 5' labelled with biotin/6-FAM to determine the binding potential and binding pattern. Results: We generated 14.1 and 17.7 million reads from sixth and seventh rounds of SELEX respectively to bovine spermatozoa. The CD-HIT clustered 78,098 and 21,196 reads in the top ten clusters and FASTAptamer identified 2,195 and 4,405 unique sequences in the top three clusters from the sixth and seventh rounds, respectively. The identified oligonucleotides formed secondary structures with delta G values between -1.17 to -26.18 kcal/mol indicating varied stability. Confocal imaging with the oligonucleotides from the seventh round revealed different patterns of binding to bovine spermatozoa (fluorescence of the whole head, spot of fluorescence in head and mid- piece and tail). Use of a 5'-biotin tagged oligonucleotide from the sixth round at 100 pmol with 4×106 spermatozoa could trap almost 80% from the suspension. Conclusion: The binding patterns and ability of the identified oligonucleotides confirms successful optimization of the SELEX process and generation of aptamers to bovine spermatozoa. These oligonucleotides provide a quick approach for selective capture of spermatozoa from complex samples. Future SELEX rounds with X- or Y- enriched sperm suspension will be used to generate oligonucleotides that bind to spermatozoa of a specific sex type.

Position of Hungarian Merino among other Merinos, within-breed genetic similarity network and markers associated with daily weight gain

  • Attila, Zsolnai;Istvan, Egerszegi;Laszlo, Rozsa;David, Mezoszentgyorgyi;Istvan, Anton
    • Animal Bioscience
    • /
    • v.36 no.1
    • /
    • pp.10-18
    • /
    • 2023
  • Objective: In this study, we aimed to position the Hungarian Merino among other Merinoderived sheep breeds, explore the characteristics of our sampled animals' genetic similarity network within the breed, and highlight single nucleotide polymorphisms (SNPs) associated with daily weight-gain. Methods: Hungarian Merino (n = 138) was genotyped on Ovine SNP50 Bead Chip (Illumina, San Diego, CA, USA) and positioned among 30 Merino and Merino-derived breeds (n = 555). Population characteristics were obtained via PLINK, SVS, Admixture, and Treemix software, within-breed network was analysed with python networkx 2.3 library. Daily weight gain of Hungarian Merino was standardised to 60 days and was collected from the database of the Association of Hungarian Sheep and Goat Breeders. For the identification of loci associated with daily weight gain, a multi-locus mixed-model was used. Results: Supporting the breed's written history, the closest breeds to Hungarian Merino were Estremadura and Rambouillet (pairwise FST values are 0.035 and 0.036, respectively). Among Hungarian Merino, a highly centralised connectedness has been revealed by network analysis of pairwise values of identity-by-state, where the animal in the central node had a betweenness centrality value equal to 0.936. Probing of daily weight gain against the SNP data of Hungarian Merinos revealed five associated loci. Two of them, OAR8_17854216.1 and s42441.1 on chromosome 8 and 9 (-log10P>22, false discovery rate<5.5e-20) and one locus on chromosome 20, s28948.1 (-log10P = 13.46, false discovery rate = 4.1e-11), were close to the markers reported in other breeds concerning daily weight gain, six-month weight, and post-weaning gain. Conclusion: The position of Hungarian Merino among other Merino breeds has been determined. We have described the similarity network of the individuals to be applied in breeding practices and highlighted several markers useful for elevating the daily weight gain of Hungarian Merino.