• Title/Summary/Keyword: Liaoning Cashmere Goat

Search Result 4, Processing Time 0.016 seconds

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.

Insights into the genetic diversity of indigenous goats and their conservation priorities

  • Liu, Gang;Zhao, Qianjun;Lu, Jian;Sun, Feizhou;Han, Xu;Zhao, Junjin;Feng, Haiyong;Wang, Kejun;Liu, Chousheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1501-1510
    • /
    • 2019
  • Objective: An experiment was conducted to evaluate genetic diversity of 26 Chinese indigenous goats by 30 microsatellite markers, and then to define conservation priorities to set up the protection programs according to the weight given to within- and between-breed genetic diversity. Methods: Twenty-six representative populations of Chinese indigenous goats, 1,351 total, were sampled from different geographic regions of China. Within-breed genetic diversity and marker polymorphism were estimated calculating the mean number of alleles, observed heterozygosities, expected heterozygosities, fixation index, effective number of alleles and allelic richness. Conservation priorities were analyzed by statistical methods. Results: A relatively high level of genetic diversity was found in twenty-four population; the exceptions were in the Daiyun and Fuqing goat populations. Within-breed kinship coefficient matrices identified seven highly inbred breeds which should be of concern. Of these, six breeds receive a negative contribution to heterozygosity when the method was based on proportional contribution to heterozygosity. Based on Weitzman or Piyasatian and Kinghorn methods, the breeds distant from others i.e. Inner Mongolia Cashmere goat, Chengdu Brown goat and Leizhou goat obtain a high ranking. Evidence from Caballero and Toro and Fabuel et al method prioritized Jining Gray goat, Liaoning Cashmere goat, and Inner Mongolia Cashmere goat, which agree with results from Kinship-based methods. Conclusion: Conservation priorities were determined according to multiple methods. Our results suggest Inner Mongolia Cashmere goat (most methods), Jining Gray goat and Liaoning Cashmere goat (high contribution to heterozygosity and total diversity) should be prioritized based on most methods. Furthermore, Daiyun goat and Shannan White goat also should be prioritized based on consideration of effective population size. However, if one breed can continually survive under changing conditions, the straightforward approach would be to increase its utilization and attraction for production via mining breed germplasm characteristics.

DNA Fingerprint Polymorphism of 3 Goat Populations from China Chaidamu Basin

  • Geng, S.M.;Shen, W.;Qin, G.Q.;Wang, X.;Hu, S.R.;Wang, Q.L.;Zhang, J.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1076-1079
    • /
    • 2002
  • The DNA fingerprint polymorphism and the genetic relationship were studied by RAPD technology on Chaidamu goat (CG), Chaidamu Cashmere goat (CCG) and Liaoning Cashmere goat (LCG) from Chaidamu Basin of Qinghai province, China. The results showed that: The amplified bands were all 94 in 3 goat populations by using 8 random primers, and the DNA polymorphism frequencies of CG, CCG and LCG were 0.8404, 0.8617 and 0.8511, respectively, and the length of these DNA fragments were 176-2937 bp. The mean heterozygosities of the 3 goat populations were 0.5148, 0.5142 and 0.5075, respectively. The genetic relationship between CCG and CG or LCG were similar (Gst=4.37% and 3.79%; $D_{ij}=0.0109$ and 0.0106), and that between CG and LCG was further (Gst=13.14%; $D_{ij}=0.0230$). These results also showed that the genetic relationship between CCG and LCG was the closest, then CG and LCG, and CG and CCG was distant.

Molecular characterization and expression pattern of a novel Keratin-associated protein 11.1 gene in the Liaoning cashmere goat (Capra hircus)

  • Jin, Mei;Cao, Qian;Wang, Ruilong;Piao, Jun;Zhao, Fengqin;Piao, Jing'ai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.328-337
    • /
    • 2017
  • Objective: An experiment was conducted to determine the relationship between the KAP11.1 and the regulation wool fineness. Methods: In previous work, we constructed a skin cDNA library and isolated a full-length cDNA clone termed KAP11.1. On this basis, we conducted a series of bioinformatics analysis. Tissue distribution of KAP11.1 mRNA was performed using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) analysis. The expression of KAP11.1 mRNA in primary and secondary hair follicles was performed using real-time PCR (real-time polymerase chain reaction) analysis. The expression location of KAP11.1 mRNA in primary and secondary hair follicles was performed using in situ hybridization. Results: Bioinformatics analysis showed that KAP11.1 gene encodes a putative 158 amino acid protein that exhibited a high content of cysteine, serine, threonine, and valine and has a pubertal mammary gland) structural domain. Secondary structure prediction revealed a high proportion of random coils (76.73%). Semi-quantitative RT-PCR showed that KAP11.1 gene was expressed in heart, skin, and liver, but not expressed in spleen, lung and kidney. Real time PCR results showed that the expression of KAP11.1 has a higher expression in catagen than in anagen in the primary hair follicles. However, in the secondary hair follicles, KAP11.1 has a significantly higher expression in anagen than in catagen. Moreover, KAP11.1 gene has a strong expression in inner root sheath, hair matrix, and a lower expression in hair bulb. Conclusion: We conclude that KAP11.1 gene may play an important role in regulating the fiber diameter.