• Title/Summary/Keyword: LiDAR 성능

Search Result 72, Processing Time 0.022 seconds

A Research on Autonomous Mobile LiDAR Performance between Lab and Field Environment (자율주행차량 모바일 LiDAR의 실내외 성능 비교 연구)

  • Ji yoon Kim;Bum jin Park;Jisoo Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.4
    • /
    • pp.194-210
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, where it is used to detect the environment in place of the driver's eyes, and its role is expanding. In recent years, there has been a growing need to test the performance of LiDARs installed in autonomous vehicles. Many LiDAR performance tests have been conducted in simulated and indoor(lab) environments, but the number of tests in outdoor(field) and real-world road environments has been minimal. In this study, we compared LiDAR performance under the same conditions lab and field to determine the relationship between lab and field tests and to establish the characteristics and roles of each test environment. The experimental results showed that LiDAR detection performance varies depending on the lighting environment (direct sunlight, led) and the detected object. In particular, the effect of decreasing intensity due to increasing distance and rainfall is greater outdoors, suggesting that both lab and field experiments are necessary when testing LiDAR detection performance on objects. The results of this study are expected to be useful for organizations conducting research on the use of LiDAR sensors and facilities for LiDAR sensors.

A Study of LiDAR's Performance Change by Road Sign's Color and Climate (도로시설물의 색깔 및 기상 환경에 따른 LiDAR의 성능변화 연구)

  • Park, Bum jin;Kim, Ji yoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.228-241
    • /
    • 2021
  • This study verified the performance change of a LiDAR when it detects road signs, which are potential cooperation targets for an autonomous vehicle. In particular, road signs of different colors and materials were produced and tested in controlled rainfall on the real road environment. The NPC and intensity were selected as the performance indicators, and a T-Test was used for comparison. The study results show that the performance of LiDAR for the detection of road signs was reduced with the increase of rainfall. The degradation of performance in retroreflective sheets was lesser than painted road signs, but at the amount of 40 mm/h or more, the detection performance of retroreflective sheets deteriorates to an extent that data cannot be collected. The performance level of black paint was lower than that of other colors on a clear day. In addition, the white sheet was most sensitively degraded with the increase in precipitation. These performance verification results are expected to be utilized in the manufacturing of road facilities that improve the visibility of sensors in the future.

Task Balancing Scheme of MPI Gridding for Large-scale LiDAR Data Interpolation (대용량 LiDAR 데이터 보간을 위한 MPI 격자처리 과정의 작업량 발란싱 기법)

  • Kim, Seon-Young;Lee, Hee-Zin;Park, Seung-Kyu;Oh, Sang-Yoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose MPI gridding algorithm of LiDAR data that minimizes the communication between the cores. The LiDAR data collected from aircraft is a 3D spatial information which is used in various applications. Since there are many cases where the LiDAR data has too high resolution than actually required or non-surface information is included in the data, filtering the raw LiDAR data is required. In order to use the filtered data, the interpolation using the data structure to search adjacent locations is conducted to reconstruct the data. Since the processing time of LiDAR data is directly proportional to the size of it, there have been many studies on the high performance parallel processing system using MPI. However, previously proposed methods in parallel approach possess possible performance degradations such as imbalanced data size among cores or communication overhead for resolving boundary condition inconsistency. We conduct empirical experiments to verify the effectiveness of our proposed algorithm. The results show that the total execution time of the proposed method decreased up to 4.2 times than that of the conventional method on heterogeneous clusters.

Parameter Analysis for Super-Resolution Network Model Optimization of LiDAR Intensity Image (LiDAR 반사 강도 영상의 초해상화 신경망 모델 최적화를 위한 파라미터 분석)

  • Seungbo Shim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.137-147
    • /
    • 2023
  • LiDAR is used in autonomous driving and various industrial fields to measure the size and distance of an object. In addition, the sensor also provides intensity images based on the amount of reflected light. This has a positive effect on sensor data processing by providing information on the shape of the object. LiDAR guarantees higher performance as the resolution increases but at an increased cost. These conditions also apply to LiDAR intensity images. Expensive equipment is essential to acquire high-resolution LiDAR intensity images. This study developed artificial intelligence to improve low-resolution LiDAR intensity images into high-resolution ones. Therefore, this study performed parameter analysis for the optimal super-resolution neural network model. The super-resolution algorithm was trained and verified using 2,500 LiDAR intensity images. As a result, the resolution of the intensity images were improved. These results can be applied to the autonomous driving field and help improve driving environment recognition and obstacle detection performance

A study on Building Area Segmentation Using Raw LiDAR Data Structure (LiDAR 원 자료 구조를 이용한 건물영역 분리에 관한 연구)

  • Han, Soo-Hee;Yu, Ki-Yun
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.119-124
    • /
    • 2004
  • LiDAR 자료를 이용한 지형 및 공간 정보 자료를 구축하기 위해서는 LiDAR 자료의 오차 보정, 건물영역 및 지면 분리, 건물 및 지형의 재구성 등의 과정이 필요하다. 그 중에서 건물영역 분리 과정은 막대한 양의 LiDAR 자료에 대한 직, 간접적인 처리를 필요로 하며 결과물의 품질에도 큰 영향을 미친다. 본 연구에서는 LiDAR 자료로부터 건물 영역을 분리해 내기 위하여 LiDAR 원 자료를 그대로 활용하는 방식을 제안하였다. 항공레이저측량은 스캔라인을 따라 취득되는 포인트정보를 순서대로 저장하여 제공하므로 LiDAR 자료로부터 연속적으로 입력되는 포인트들은 서로 인접할 가능성이 높다. 이와 같은 특성을 이용하여 유사한 고도 값을 갖는 인접 포인트들로 클래스를 형성하고 새로운 포인트가 속할 클래스를 검색하여 편입시킴으로써 건물영역을 분리해 낸다. 아울러 각 건물 클래스에 대한 레이블링도 자동적으로 수행하며 새로운 포인트가 편입될 클래스를 검색하는 방법에 있어서도, 클래스의 검색 순서와 클래스의 자료 구조를 효율적으로 운용함으로써 성능 향상을 도모하였다.

  • PDF

Development of Wideband Frequency Modulated Laser for High Resolution FMCW LiDAR Sensor (고분해능 FMCW LiDAR 센서 구성을 위한 광대역 주파수변조 레이저 개발)

  • Jong-Pil La;Ji-Eun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1023-1030
    • /
    • 2023
  • FMCW LiDAR system with robust target detection capabilities even under adverse operating conditions such as snow, rain, and fog is addressed in this paper. Our focus is primarily on enhancing the performance of FMCW LiDAR by improving the characteristics of the frequency-modulated laser, which directly influence range resolution, coherence length, and maximum measurement range etc. of LiDAR. We describe the utilization of an unbalanced Mach-Zehnder laser interferometer to measure real-time changes of the lasing frequency and to correct frequency modulation errors through an optical phase-locked loop technique. To extend the coherence length of laser, we employ an extended-cavity laser diode as the laser source and implement a laser interferometer with an photonic integrated circuit for miniaturization of optical system. The developed FMCW LiDAR system exhibits a bandwidth of 10.045GHz and a remarkable distance resolution of 0.84mm.

A Study of LiDAR's Detection Performance Degradation in Fog and Rain Climate (안개 및 강우 상황에서의 LiDAR 검지 성능 변화에 대한 연구)

  • Kim, Ji yoon;Park, Bum jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.2
    • /
    • pp.101-115
    • /
    • 2022
  • This study compared the performance of LiDAR in detecting objects in rough weather with that in clear weather. An experiment that reproduced rough weather divided the fog visibility into four stages from 200 m to 50 m and controlled the rainfall by dividing it into 20 mm/h and 50 mm/h. The number of points cloud and intensity were used as the performance indicators. The difference in performance was statistically investigated by a T-Test. The result of the study indicates that the performance of LiDAR decreased in the order in situations of 20 mm/h rainfall, fog visibility less than 200 m, 50 mm/h rainfall, fog visibility less than 150 m, fog visibility less than 100 m, and fog visibility less than 50 m. The decreased performance was greater when the measurement distance was greater and when the color was black rather than white. However, in the case of white, there was no difference in performance at a measurement distance of 10 m even at 50 m fog visibility, which is considered the worst situation in this experiment. This no difference in performance was also statistically significant. These performance verification results are expected to be utilized in the manufacture of road facilities in the future that improve the visibility of sensors.

A Comparative Analysis of Landslide Susceptibility Using Airborne LiDAR and Digital Map (항공 LiDAR와 수치지도를 이용한 산사태 취약성 비교 분석)

  • Kim, Se Jun;Lee, Jong Chool;Kim, Jin Soo;Roh, Tae Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.32 no.4_1
    • /
    • pp.281-292
    • /
    • 2014
  • This study examined the accuracy that produced using various types and combinations of landslide-related factors from landslide susceptibility index maps. A database of landslide-related factors was adopted by the landslide locations that obtained from aerial photographs, and the topographic factors that derived from airborne LiDAR observations and digital maps, and various soil, forest, and land cover. Landslide susceptibility index maps were calculated by logistic regression and frequency ratio from the landslide susceptibility index. The correlation between airborne LiDAR data and digital map was shown strong similarities with one another. Landslide susceptibility index maps indicated the existence of a strong correlation and high prediction accuracy, especially when the frequency ratio and airborne LiDAR were used. Therefore, we concluded that the Airborne LiDAR will contribute to the development of effective landslide prediction methods and damage reduction measures.

Development of Parallel Signal Processing Algorithm for FMCW LiDAR based on FPGA (FPGA 고속병렬처리 구조의 FMCW LiDAR 신호처리 알고리즘 개발)

  • Jong-Heon Lee;Ji-Eun Choi;Jong-Pil La
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.335-343
    • /
    • 2024
  • Real-time target signal processing techniques for FMCW LiDAR are described in this paper. FMCW LiDAR is gaining attention as the next-generation LiDAR for self-driving cars because of its detection robustness even in adverse environmental conditions such as rain, snow and fog etc. in addition to its long range measurement capability. The hardware architecture which is required for high-speed data acquisition, data transfer, and parallel signal processing for frequency-domain signal processing is described in this article. Fourier transformation of the acquired time-domain signal is implemented on FPGA in real time. The paper also details the C-FAR algorithm for ensuring robust target detection from the transformed target spectrum. This paper elaborates on enhancing frequency measurement resolution from the target spectrum and converting them into range and velocity data. The 3D image was generated and displayed using the 2D scanner position and target distance data. Real-time target signal processing and high-resolution image acquisition capability of FMCW LiDAR by using the proposed parallel signal processing algorithms based on FPGA architecture are verified in this paper.

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.