• Title/Summary/Keyword: LiCoO2

Search Result 707, Processing Time 0.023 seconds

Structural Stability During Charge-Discharge Cycles in Zr-doped LiCoO2 Powders (충방전 과정중 구조가 안정한 Zr이 도핑된 LiCoO2 분말)

  • Kim, Seon-Hye;Shim, Kwang-Bo;Ahn, Jae-Pyoung;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.167-171
    • /
    • 2008
  • Zirconium-doped $Li_{1.1}Co_{1-x}Zr_xO_2(0{\leq}x{\leq}0.05)$ powders as cathode materials for lithium ion batteries were synthesized using an ultrasonic spray pyrolysis method. Cyclic voltammetry and cyclic stability tests were performed, and the changes of microstructure were observed. The solubility limit of zirconium into $Li_{1.1}CoO_2$ was less than 5 mol%, and monoclinic $Li_2ZrO_3$ phase was formed above the limit. The Zr-doping suppressed the grain growth and increased the lattice parameters of the hexagonal $LiCoO_2$ phase. The Zr-dopiong of 1mol% resulted in the best cyclic performance in the range of $3.0{\sim}4.3V$ at 1C rate (140 mA/g); the initial discharge capacity decreased from 158 mAh/g to 60 mAh/g in the undoped powder, while from 154 mAh/g to 135 mAh/g in the Zr-doped powder of 1 mol% after 30 cycles. The excellent cycle stability of Zr-doped powder was due to the low polarization during chargedischarge processes which resulted from the delayed collapse of the crystal structure of the active materials with Zr-doping.

Carbon Dioxide Sorption Properties and Sintering Behavior of Lithium Zirconate Prepared by Solid-State Reaction (고상반응에 의하여 제조된 Li2ZrO3의 이산화탄소 흡수 및 소결 특성)

  • Woo, Sang-Kuk;Lee, Shi-Woo;Yu, Ji-Haeng
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.5 s.288
    • /
    • pp.309-314
    • /
    • 2006
  • We synthesized lithium zirconate using solid-state reaction and analyzed thermal properties (TG/DTA) of starting materials and the synthesized one. When $Li_2ZrO_3$ powder was exposed to $CO_2$ environment at $500^{\circ}C$, 93% of the theoretical absorption weight was gained within 280 min with fairly high sorption rate. Almost all the absorbed $CO_2$ was generated by heating the sample to $800^{\circ}C$. We also investigated densification behavior of $Li_2ZrO_3$ under $CO_2$ environment. By sintering $Li_2ZrO_3$ at $760^{\circ}C$ using 2-step process, we obtained dense product, composed mainly of $Li_2ZrO_3\;and\;ZrO_2$, with relative density of 92%.

The Novel Synthetic Route to Li$Co_{y}Ni_{1-y}O_{2}$ as a Cathode Material in Lithium Secondary Batteries

  • Gang, Seong Gu;Ryu, Gwang Seon;Jang, Sun Ho;Park, Sin Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.12
    • /
    • pp.1328-1332
    • /
    • 2001
  • The structure and electrochemical properties of the LixCoyNi1-yO2 (y=0.1, 0.3, 0.5, 0.7, 1.0) system synthesized by solid state reaction with various starting materials have been investigated to optimize the characteristics and synthetic conditions of the LixCoyNi1-yO2. The first discharge capacities of LixCoyNi1-yO2 are 60 mAh/g-180 mAh/g with synthetic conditions. Among them, the LixNi0.7Co0.3O2, which was prepared with LiOH, NiO, and Co3O4 at $850^{\circ}C$, had the best electrochemical properties. The first discharge capacity of the compound was 180 mAh/g.

Effect of $M_{2}CO_{3}$(M=Li, Na) Addition on the Humidity Sensitivity of $V_{2}O_{5}$-doped $TiO_2$ ($V_{2}O_{5}$를 dopant로 한 $TiO_2$의 감습에 미치는 $M_{2}CO_{3}$(M=Li, Na)의 영향)

  • 강이국;송창열;신용덕
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.343-346
    • /
    • 1995
  • In this paper, the effect of alkaline oxides on the humidity sensitivity of $V_2O_{5}$(2mol%)-doped $TiO_2$(98mol%) was investigated as functions of $Li_{2}Co_{3}$, $Na_{2}Co_{3}$. III-1. Measurement of Density. When the mole% of $Li_2$O is varied 0,1,2,5mol%, the more the mole% of additives is increased, the more difference of bulk and apparent density is largely narrowed. The difference of two densities of sample containing 2mol% $Na_2O$ was large all the moat. The sample containing 1mol% $Na_2O$ was small most. III-2. Observation of porosity. The porosity and total intrusion volume according to various amounts of $Li_2O$ was reduced and those of sample containing 2mol% $Na_2O$ as 31.13%, 0.1155mL/g was the highest and 1mol% $Na_2O$ was lowed most and 5, 10mol% $Na_2O$ was more high compare with sample without alkaline oxides. III-3. Characteristic of humidity sensitivity. 1. Impedance of samples containing $Li_2O$ was high compare with sample without alkaline oxides, so we thought it showed Poor sensitivity because it have no impedance changing rapidly as function of relative humidity. 2. When the humidity was increasing from 30RH% to 90RH%, the impedance of sample containing 2mol% $Na_2O$ at 120HZ changed exponential rapidly from 6${\times}$$10^{7}$$\Omega$) to 1.25${\times}$$10^4$$\Omega$. At under 50RH% and over 50RH%, the humidity sensitivity of samples containing 2mol% $Na_2O$ was best especially in the range of the low humidity. III-4. Characteristic of TG curves. When algal me oxide $M_{2}CO_{3}$(M=Li, Na) were added into $V_{2}O_{5}$-doped $TiO_2$, the stability of humidity sensitivity of samples containing amounts of $Li_2O$ was unstable. The samples containing 1mol% $Na_2O$ was unstable.

  • PDF

High power lithium ion polymer batteries (IV): Nano-sized cathode materials manufactured in a single synthetic step using united eutectic self-mixing method

  • An, Uk;Ra, Dong-Il;Lee, Beom-Jae;Han, Gyu-Seung
    • Rubber Technology
    • /
    • v.6 no.2
    • /
    • pp.91-98
    • /
    • 2005
  • Nano-sized cathode materials for high power lithium ion polymer battery are easily and economically prepared using united eutectic self-mixing method without any artificial mixing procedures of reactants and ultra-miniaturization of products. While the micro-sized $LiNi_{0.7}Co_{0.3}O_2$ exhibits the discharge capacities of 167.8 mAh/g at 0.1C and 142.5 mAh/g at 3.0C, those of the nano-sized $LiNi_{0.7}Co_{0.3}O_2$ are 170.8 mAh/g at 0.1C and 159.3 mAh/g at 3.0C. In the case of $LiCoO_2$, the micro-sized $LiCoO_2$ exhibits the discharge capacities of 134.8 mAh/g at 0.1C and 118.6 mAh/g at 5.0C. Differently, the nano-sized $LiCoO_2$ exhibits the discharge capacities of 137.2 mAh/g at 0.1C and 131.7 mAh/g at 5.0C.

  • PDF

Electrochemical Properties of LiNi0.4Mn0.3Co0.3O2 Cathode Material for Lithium Ion Battery (리튬이온전지용 정극활물질 LiNi0.4Mn0.3Co0.3O2의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.7
    • /
    • pp.650-654
    • /
    • 2006
  • [ $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ ] cathode material was synthesized by a mixed hydroxide method. Structural characterization was carried out using X-ray diffraction studies. Electrochemical studies were performed by assembling 2032 coin cells with lithium metal as an anode. DSC (Differential scanning calorimetry) data showed that exothermic reactions of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ charged to 4.3 V versus Li started at high temperatures$(280\sim390^{\circ}C)$. The cell of $LiNi_{0.4}Mn_{0.3}Co_{0.3}O_2$ mixed cathode delivered a discharge capacity of 150 mAh/g at a 0.2 C rate. The capacity of the cell decreased with the current rate and a useful capacity of 134 mAh/g was obtained at a 2 C rate. The reversible capacity after 100th cycles was 126 mAh/g when a cell was cycled at a current rate of 0.5 C in $2.8\sim4.3V$.

Thermal Behavior of LixCoO2 Cathode and Disruption of Solid Electrolyte Interphase Film

  • Doh, Chil-Hoon;Kim, Dong-Hun;Lee, Jung-Hun;Lee, Duck-Jun;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Hwang, Young-Gi;Veluchamy, Angathevar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.783-786
    • /
    • 2009
  • Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and ion chromatography(IC) were employed to analyze the thermal behavior of $Li_xCoO_2$ cathode material of lithium ion battery. The mass loss peaks appearing between 60 and 125 ${^{\circ}C}$ in TGA and the exothermic peaks with 4.9 and 7.0 J/g in DSC around 75 and 85 ${^{\circ}C}$ for the $Li_xCoO_2$ cathodes of 4.20 and 4.35 V cells are explained based on disruption of solid electrolyte interphase (SEI) film. Low temperature induced HF formation through weak interaction between organic electrolyte and LiF is supposed to cause carbonate film disruption reaction, $Li_2CO_3\;+\;2HF{\rightarrow}\;2LiF\;+\;CO_2\;+\;H_2O$. The different spectral DSC/TGA pattern for the cathode of 4.5 V cell has also been explained. Presence of ionic carbonate in the cathode has been identified by ion chromatography and LiF reported by early researchers has been used for explaining the film SEI disruption process. The absence of mass loss peak for the cathode washed with dimethyl carbonate (DMC) implies ionic nature of the film. The thermal behavior above 150 ${^{\circ}C}$ has also been analyzed and presented.

Thermal Stability of Delithiated LiCoO2-organic Electrolyte for Lithium-Ion Rechargeable Batteries (리튬이온이차전지용 LiCoO2-유기전해액의 충전상태에 따른 열적 안정성)

  • Kim, Dong-Hun;Lee, Young-Ho;Shin, Hye-Min;Chung, Young-Dong;Doh, Chil-Hoon;Jin, Bong-Soo;Kim, Hyun-Soo;Moon, Seong-In;Oh, Dae-Hui;Kim, Ki-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.5
    • /
    • pp.421-424
    • /
    • 2007
  • Thermal behavior of $Li_{1-x}CoO_2$ has been investigated employing DSC (Differential Scanning calorimetry) and TGA (Thermogravimetry Analyzer), and the crystal parameters were calculated from XRD (X-ray diffraction).for the commercial rectangular pouch cell(1000 mAh).The cathode materials coated over aluminium foil current collector is made up of a blend consisting of active material $LiCoO_2$(size $20\;{\mu}m$, 94 wt%), conducting material super p black (SPB, 3 wt%) and binder polyvinylidene fluoride (PVDF, 3 wt%). The anode is a mix consisting of carbon (92 wt%) and PVDF(8 wt%) coated over copper foil. The cells for the experiments were first preconditioned by cycling three times and stabilized at OCV=3.0, 3.5, 4.2, 4.35 and 4.5 V. The stabilized cathode material was used for thermal and crystal parameter investigations.

Effects of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]O2 Lithium-ion Cathode Materials (리튬 이차전지용 양극활물질 Li[Ni0.6Co0.2Mn0.2]O2의 소성 온도가 전기화학적 특성에 미치는 영향)

  • Yoo, Gi-Won;Jeon, Hyo-Jin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Using $Na_2CO_3$ and $MeSO_4$ (Me = Ni, Co and Mn) as starting materials, the precursor of $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ has been synthesized by carbonate co-precipitation. The precursor was mixed with $Li_2CO_3$, and calcined at 750, 850, and$950^{\circ}C$ in air. Effect of calcinations temperature on characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials was investigated. The structure and characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical measurements. The X-ray diffraction (XRD) results show that the intensity ratio of $I_{(003)}/I_{(104)}$ increased and the R-factor ratio decreased with the increase of calcinations temperature. And Scanning electron microscopy (SEM) result show that the primary particle size increased. Especially, the $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ calcined at $950^{\circ}C$ for 24 H shows excellent electrochemical performances with reversible specific capacity of $165.3mAhg^{-1}$ [cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] and good capacity retention of 95.4% after 50th charge/discharge cycles[cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)].