DOI QR코드

DOI QR Code

Thermal Stability of Delithiated LiCoO2-organic Electrolyte for Lithium-Ion Rechargeable Batteries

리튬이온이차전지용 LiCoO2-유기전해액의 충전상태에 따른 열적 안정성

  • 김동훈 (한국전기연구원 전지연구그룹) ;
  • 이영호 (한국전기연구원 전지연구그룹) ;
  • 신혜민 (한국전기연구원 전지연구그룹) ;
  • 정영동 (한국전기연구원 전지연구그룹) ;
  • 도칠훈 (한국전기연구원 전지연구그룹) ;
  • 진봉수 (한국전기연구원 전지연구그룹) ;
  • 김현수 (한국전기연구원 전지연구그룹) ;
  • 문성인 (한국전기연구원 전지연구그룹) ;
  • 오대희 (부경대학교 공업화학과) ;
  • 김기원 (경남대학교 IT용 에너지 저장 및 변환센터)
  • Published : 2007.05.01

Abstract

Thermal behavior of $Li_{1-x}CoO_2$ has been investigated employing DSC (Differential Scanning calorimetry) and TGA (Thermogravimetry Analyzer), and the crystal parameters were calculated from XRD (X-ray diffraction).for the commercial rectangular pouch cell(1000 mAh).The cathode materials coated over aluminium foil current collector is made up of a blend consisting of active material $LiCoO_2$(size $20\;{\mu}m$, 94 wt%), conducting material super p black (SPB, 3 wt%) and binder polyvinylidene fluoride (PVDF, 3 wt%). The anode is a mix consisting of carbon (92 wt%) and PVDF(8 wt%) coated over copper foil. The cells for the experiments were first preconditioned by cycling three times and stabilized at OCV=3.0, 3.5, 4.2, 4.35 and 4.5 V. The stabilized cathode material was used for thermal and crystal parameter investigations.

Keywords

References

  1. S. I. Tobishima, K. Takei. Y. Sakurai, and J. I. Yamaki, 'Lithium ion cell safety', J. Power Sources, Vol. 90, p. 188, 2000 https://doi.org/10.1016/S0378-7753(00)00409-2
  2. P. Biensan, B. Simon, J. P. Peres, A. deGuibert, M. Broussely, J. M. Bodet, and F. Perton, 'On safety of lithium-ion cells', J. Power Sources, Vol. 81-82, p. 906, 1999
  3. H. Maleki, G. Deng, A. Ananu, and J. Howard, 'Thermal stability studies of Li-Ion cells and components' J. Electrochem. Soc., Vol. 146, p. 3224, 1999 https://doi.org/10.1149/1.1392458
  4. M. N. Richard and J. R. Dahn, 'Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. II. modeling the results and predicting differential scanning calorimeter curves', J. Electrochem. Soc., Vol. 146, No. 2078, 1999
  5. E. Peter Roth, 'Thermal characterization of Li -ion cells using calorimetric techniques' , Proceedings of the Intersociety Energy Conversion Engineering Conference 2, p, 962, 2000
  6. D. D. MacnNeil and J. R. Dahn, 'The reaction of charged cathode vvith nonaqueous solvents and electrolyte', J. Electrochem. Soc., Vol. 148, p. A1211, 2001 https://doi.org/10.1149/1.1407246
  7. J. R. Dahn, E. W. Fuller, M. Obrovac, and U. von Sacken, 'Thermal stability of $LixCoO_2,\;LixNiO_2\;and\;\lambdalI-MnO_2$and consequences for the safety of Li-ion cells', Solid State Ionics, Vol. 69, p. 265, 1994 https://doi.org/10.1016/0167-2738(94)90415-4
  8. 문성인, 정의덕, 도칠훈, 윤문수, '리튬 2차전지용$LiCoO_2$ 양극의 제조 및 특성', 전기전자재료학회논문지, 7권, 4호, p. 317, 1994
  9. J. N. Reimers and J. R. Dahn, 'Electrochemical and In Situ X -ray diffraction studies of lithium intercalation in $LixCoO_2$', J. Electrochem. Soc., Vol. 139, p. 2091, 1992 https://doi.org/10.1149/1.2221184
  10. H. J. Bang, H. Joachin, H. Yang, K. Amine, and J. Prakash, 'Contribution of the structural changes of $LiNi_{0.8}Co_{0.15}Al_{0.15}O_2$ cathodes on the exothermic reaction in Li-Ion cells', J. Electrochemical Soc., Vol. 153 p, A731, 2006 https://doi.org/10.1149/1.2171828
  11. D. D. MacnNeil and J. R Dahn, 'The reactions of $Li_{0.5}CoO_2$ with nonaqueous solvents at elevated temperature', J. Electrochem. Soc., Vol. 149, p. A912, 2002 https://doi.org/10.1149/1.1483865
  12. R. Spotnitz, J. Franklin, 'Abuse behavior of high-power, lithium-ion cells', J. Power Sources, Vol. 113, p. 81, 2003 https://doi.org/10.1016/S0378-7753(02)00488-3