• 제목/요약/키워드: Li2CO3

검색결과 886건 처리시간 0.026초

Crystallographic and Magnetic Properties of Li0.7Co0.2Ti0.2V0.2Fe1.7O4 Ferrite

  • Chae, Kwang-Pyo;Kwon, Woo-Hyun;Lee, Jae-Gwang
    • Journal of Magnetics
    • /
    • 제15권1호
    • /
    • pp.25-28
    • /
    • 2010
  • This study examined the crystallographic and magnetic properties of vanadium-substituted lithium cobalt titanium ferrite, $Li_{0.7}Co_{0.2}Ti_{0.2}V_{0.2}Fe_{1.7}O_4$. Ferrite was synthesized using a conventional ceramic method. The samples annealed below $1040^{\circ}C$ showed X-ray diffraction peaks for spinel and other phases. However, the sample annealed above $1040^{\circ}C$ showed a single spinel phase. The lattice constant of the sample was $8.351\;{\AA}$, which was relatively unaffected by vanadium-substitution. The average grain size after vanadium-substitution was $13.90\;{\mu}m$, as determined by scanning electron microscopy. The M$\ddot{o}$ssbauer spectrum could be fitted to two Zeeman sextets, which is the typical spinel ferrite spectra of $Fe^{3+}$ with A and B sites, and one doublet. From the absorption area ratio of the M$\ddot{o}$ssbauer spectrum, the cation distribution was found to be ($Co_{0.2}V_{0.2}Fe_{0.6})[Li_{0.7}Ti_{0.2}Fe_{1.1}]O_4$. Vibrating sample magnetometry revealed a saturation magnetization and coercivity of 36.9 emu/g and 88.6 Oe, respectively, which were decreased by vanadium-substitution.

Enhanced Electrochemical Property of Surface Modified Li[Co1/3Ni1/3Mn1/3]O2 by ZrFx Coating

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권2호
    • /
    • pp.355-359
    • /
    • 2010
  • A $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ cathode was modified by applying a $ZrF_x$ coating. The surface-modified cathodes were characterized by XRD, SEM, EDS, TEM techniques. XRD patterns of $ZrF_x$-coated $Li[Co_{1/3}Ni_{1/3}Mn_{1/3}]O_2$ revealed that the coating did not affect the crystal structure of the parent powder. SEM and TEM images showed that $ZrF_x$ nano-particles were formed as a coating layer, and EDS data confirmed that $ZrF_x$ distributed uniformly on the surface the powder. Capacity retention of coated samples at high C rates was superior to that of pristine sample. However, as the coating concentration increases beyond the optimum concentration, the rate capability was deteriorated. Whereas, as the increase of coating concentration to 2.0 wt %, the cyclic performances of the electrodes under the severe conditions (high cut-off voltage, 4.8 V, and high measurement temperature, $55^{\circ}C$) were improved considerably.

연속 기체흐름계 및 일시 기체흐름계에서의 고체 전해질 $CO_2$ 가스센서의 열역학적 분석 (Thermodynamic Analysis of Solid Electrolyte $CO_2$ Sensor in Continuous and Discontinuous Flow Systems)

  • 최순돈
    • 센서학회지
    • /
    • 제7권5호
    • /
    • pp.319-326
    • /
    • 1998
  • 연속 기체흐름계에서 감지막으로 $Na_2CO_3$$MCO_3$ ($M=Cs_2,K_2,Li_2,Ca$)를 입힌 $Na^+$ 이온 전해질 센서가 $CO_2$ 가스를 감지할 때 anode반응을 도출하였다. 흔히 사용되는 전기화학 센서에 대해 일반적으로 알려진 전체 전극반응인 $MCO_3=MO+CO_2$ 반응은 위의 $Na^+$이온 전해질 센서에는 적합한 반응이 아니었다. 따라서 anode 반응은 전체cell 내의 ionic balance를 유지하기 위해 전해질과 감지막 계면에 이온교환반응을 첨가시킴으로써 도출할 수 있었으며 anode반응은 $Na_2CO_3$ 및 감지막의 금속($M^{++}$) 이온이 포함된 산화물이 참가하는 반응임을 알 수 있었다. 이와 같이 도출된 전극반응으로부터 구한 EMF와 일시 기체흐름계에서의 출력 EMF와의 차이를 아울러 검토하였다. 이러한 출력에서의 차이는 $CO_2$$O_2$의 분압과 분위기가스와 전극물질과의 비가역반응에 기인됨을 알았다.

  • PDF

소결 조제를 이용한 고체산화물 연료전지용 세리아 전해질의 저온소결 특성 연구 (A Study of Ceria on Low-temperature Sintering Using Sintering Aids for Solid Oxide Fuel Cells)

  • 오창훈;송광호;한종희;윤성필
    • 한국수소및신에너지학회논문집
    • /
    • 제25권3호
    • /
    • pp.280-288
    • /
    • 2014
  • SDC (Samarium doped Ceria) electrolyte was developed for Intermediate temperature SOFC ($500^{\circ}C-800^{\circ}C$) which showed a good electrical conductivity. In this study, we used sintering aids to reduce the SDC sintering temperature down to $1000^{\circ}C$, especially which can help the SOFC scale-up. In order to reduce the SDC sintering temperature, $Li_2CO_3$ and $TiO_2$ were used as a sinering aids for decreasing sintering temperature. $Li_2CO_3$ and $TiO_2$ doped SDC sintered at $1000^{\circ}C$ showed 99% of the theoretical density and higher electrical conductivity than the pure SDC sintered at $1500^{\circ}C$. When measuring the OCV (Open circuit voltage) with the $Li_2CO_3$ and $TiO_2$ doped SDC electrolyte, however, the OCV values were lower than the theoretical OCV values which means that the modified SDC still had electronic conductivity.

μ-PD법을 이용하여 성장시킨 Er2O3와 MgO를 첨가한 화학양론조성 LiNbO3 단결정의 Up-conversion 특성 (Up-conversion Property of Er2O3 and MgO Co-doped Stoichiometric LiNbO3 Single Crystal by Using the μ-PD Method)

  • 서중원;전원남;이성문;양우석;이한영;윤대호
    • 한국세라믹학회지
    • /
    • 제39권9호
    • /
    • pp.835-839
    • /
    • 2002
  • Micro-Pulling Down(${\mu}$-PD)법을 이용하여 직경 1 mm, 길이 30∼35 mm의 $Er_2O_3$와 MgO가 첨가된 화학양론조성 $LiNbO_3$단결정을 성장하였다. 성장된 결정의 $Er_2O_3$와 MgO 첨가에 따른 up-conversion 특성의 변화 및 MgO 첨가량이 광손상에 미치는 영향을 관찰하기 위해 투과율을 측정하였다. 또한 $LiNbO_3$ 단결정 내의 결함유무를 광학현미경을 이용하여 관찰하였고, Electron Probe Micro Analysis(EPMA)를 이용하여 결정 내에 $Er_2O_3$와 MgO가 균일하게 분포되어있음을 확인하였다.

Copper phthalocyanine과 Dilithium phthalocyanine 화합물 박막의 휘발성 유기화합물(VOCs) 센서 특성 (Volatile Organic Compounds(VOCs) Sensing Properties of Thin Films Based on Copper phthalocyanine and Dilithium phthalocyanine Compounds)

  • 김동현;강영구;강영진
    • 한국안전학회지
    • /
    • 제28권2호
    • /
    • pp.37-41
    • /
    • 2013
  • In this work, we report the effect on the volatole organic compounds(VOCs) sensing properties of Copper phthalocyanine(CoPc) and Dilithium phthalocyanine(DiLiPc) thin films onto alumina substrates. Use evaporation method and the spin-coated method for sensing device. The materials of metallophthalocyanine macrocyclic compound solutions blended with N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine and/or Poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] solutions. The influence of the blended in with metallophthalocyanine macrocyclic compounds on the resistance have been measured and analyzed in five different volatole organic compounds. The following results were obtained: The AFM 3D image of thin films deposited on metallophthalocyanine macrocyclic compound shows that the surfaces roughness were about CuPc 4.1~14.3 nm(7.5~8.1%), DiLiPc 10.3~22.2 nm(7.9~11.5%). The resistances decreases upon increasing the concentration of vapor organic compounds to CuPc and DiLiPc thin films. That thin films blended Copper phthalocyanine(CoPc) and Dilithium phthalocyanine(DiLiPc) with N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine and/or Poly[2-methoxy--5-(2'-ethylhexyloxy)-1,4-phenylenevinylene]. The resistances of blended thin films with N,N'-diphenyl-N,N'-bis(1-naphthyl)-1,1'-biphenyl-4,4"-diamine and/or Poly[2-methoxy--5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] decreases upon increasing the concentration of volatole organic compounds(VOCs) on DiLiPc than CuPc compound thin films.

Synthesis and Electrochemical Properties of Li3V2(PO4)3-LiMnPO4 Composite Cathode Material for Lithium-ion Batteries

  • Yun, Jin-Shik;Kim, Soo;Cho, Byung-Won;Lee, Kwan-Young;Chung, Kyung Yoon;Chang, Wonyoung
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권2호
    • /
    • pp.433-436
    • /
    • 2013
  • Carbon-coated $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials are first reported in this work, prepared by the mechanochemical process with a complex metal oxide as the precursor and sucrose as the carbon source. X-ray diffraction pattern of the composite material indicates that both olivine $LiMnPO_4$ and monoclinic $Li_3V_2(PO_4)_3$ co-exist. We further investigated the electrochemical properties of our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite cathode materials using galvanostatic charging/discharging tests, where our $Li_3V_2(PO_4)_3-LiMnPO_4$ composite electrode materials exhibit the charge/discharge efficiency of 91.9%, while $Li_3V_2(PO_4)_3$ and $LiMnPO_4$ exhibit the efficiency of 87.7 and 86.7% in the first cycle. The composites display unique electrochemical performances in terms of overvoltage and cycle stability, displaying a reduced gap of 141.6 mV between charge and discharge voltage and 95.0% capacity efficiency after $15^{th}$ cycles.

Electrochemical Properties of LixCoyNi1-yO2 Prepared by Citrate Sol0Gel Method

  • 장순호;강성구;장기호
    • Bulletin of the Korean Chemical Society
    • /
    • 제18권1호
    • /
    • pp.61-65
    • /
    • 1997
  • The electrochemical properties of LixCoyNi1-yO2 compounds (y=0.1, 0.3, 0.5, 0.7, 1.0) prepared by citrate sol-gel method have been investigated. The LixCoyNi1-yO2 compounds were annealed at 850 ℃ for 20 h after preheating at 650 ℃ for 6 h, in air. The x-ray diffraction (XRD) patterns for LixCoyNi1-yO2 have shown that these compounds have a well developed layered structure (R&bar{3} m). From the scanning electron microscopy of LixCoyNi1-yO2, particle size was estimated less than 5 μm. The Li//LixCoyNi1-yO2 electrochemical cell consists of Li metal anode and 1 M LiClO4-propylene carbonate (PC) solution as the electrolyte. The differences in intercalation rate of the LixCoyNi1-yO2 in the first charge/discharge cycle were less than 0.05 e-. The first discharge capacities of LixCoO2 and LixCo0.3Ni0.7O2 were ∼130 mAh/g and ∼160 mAh/g, respectively.

Enhanced Cathode/Sulfide Electrolyte Interface Stability Using an Li2ZrO3 Coating for All-Solid-State Batteries

  • Lee, Jun Won;Park, Yong Joon
    • Journal of Electrochemical Science and Technology
    • /
    • 제9권3호
    • /
    • pp.176-183
    • /
    • 2018
  • In this study, a $Li_2ZrO_3$ coated $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$ (NCA) cathode was applied to an all-solid-state cell employing a sulfide-based solid electrolyte. Sulfide-based solid electrolytes are preferable for all-solid-state cells because of their high ionic conductivity and good softness and elasticity. However, sulfides are very reactive with oxide cathodes, and this reduces the stability of the cathode/electrolyte interface of all-solid-state cells. $Li_2ZrO_3$ is expected to be a suitable coating material for the cathode because it can suppress the undesirable reactions at the cathode/sulfide electrolyte interface because of its good stability and high ionic conductivity. Cells employing $Li_2ZrO_3$ coated NCA showed superior capacity to those employing pristine NCA. Analysis by X-ray photoelectron spectroscopy and electron energy loss spectroscopy confirmed that the $Li_2ZrO_3$ coating layer suppresses the propagation of S and P into the cathode and the reaction between the cathode and the sulfide solid electrolyte. These results show that $Li_2ZrO_3$ coating is promising for reducing undesirable side reactions at the cathode/electrolyte interface of all-solid-state-cells.

$Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ 유리의 결정화에 따른 전기 화학적 특성변화 (Crystallization and Electrochemical properties of $Li_{2}O=P_{2}O_{5}=V_{2}O_{5}$ Glasses)

  • 손명모;이헌수;구할본;김상기
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.523-527
    • /
    • 2000
  • Vanadate glasses in the Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ system containing 10mo1% glass former, P$_2$O$_{5}$ were prepared by melting the batch in pt. crucib1e followed by quenching on the copper plate. We found that Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics obtained from nucleation of glass showed significantly higher capacity and longer cycle life than conventionally made crystalline LiCoO$_2$, LiNiO$_2$and LiV$_3$O$_{8}$. In the present paper, We describe electro-chemical properties during crystallization process and find the best crystallization condition of Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ g1ass as cathod material. Li$_2$O-P$_2$O$_{5}$-V$_2$O$_{5}$ glass-ceramics shows superior rechargeable capacity of 220 mAh/g in the cycling between 2.0 and 3.9V.etween 2.0 and 3.9V.

  • PDF