Browse > Article
http://dx.doi.org/10.4283/JMAG.2010.15.1.025

Crystallographic and Magnetic Properties of Li0.7Co0.2Ti0.2V0.2Fe1.7O4 Ferrite  

Chae, Kwang-Pyo (Department of Applied Physics, Konkuk University)
Kwon, Woo-Hyun (Department of Applied Physics, Konkuk University)
Lee, Jae-Gwang (Department of Applied Physics, Konkuk University)
Publication Information
Abstract
This study examined the crystallographic and magnetic properties of vanadium-substituted lithium cobalt titanium ferrite, $Li_{0.7}Co_{0.2}Ti_{0.2}V_{0.2}Fe_{1.7}O_4$. Ferrite was synthesized using a conventional ceramic method. The samples annealed below $1040^{\circ}C$ showed X-ray diffraction peaks for spinel and other phases. However, the sample annealed above $1040^{\circ}C$ showed a single spinel phase. The lattice constant of the sample was $8.351\;{\AA}$, which was relatively unaffected by vanadium-substitution. The average grain size after vanadium-substitution was $13.90\;{\mu}m$, as determined by scanning electron microscopy. The M$\ddot{o}$ssbauer spectrum could be fitted to two Zeeman sextets, which is the typical spinel ferrite spectra of $Fe^{3+}$ with A and B sites, and one doublet. From the absorption area ratio of the M$\ddot{o}$ssbauer spectrum, the cation distribution was found to be ($Co_{0.2}V_{0.2}Fe_{0.6})[Li_{0.7}Ti_{0.2}Fe_{1.1}]O_4$. Vibrating sample magnetometry revealed a saturation magnetization and coercivity of 36.9 emu/g and 88.6 Oe, respectively, which were decreased by vanadium-substitution.
Keywords
Li-Co-Ti-V ferrite; M$\ddot{o}$ssbauer spectroscopy; saturation magnetization; coercivity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 2
연도 인용수 순위
1 T. S. Kwon, S. S. Kim, and D. H. Kim, Colloque C1, Suppl. J. Phys. Mars III 231 (1997).
2 W. H. Kwon, S. H. Lee, J. G. Lee, and K. P. Chae, J. Kor. Phys. Soc. 55, 1548 (2009).   DOI   ScienceOn
3 W. H. Kwon, S. H. Lee, J. G. Lee, and K. P. Chae, J. Magn. Magn. Mater. (submitted 2009).
4 S. Phanjoubam, D. Kothari, and J. S. Baijal, Phys. Status Solidi A 111, 131 (1989).   DOI   ScienceOn
5 P. D. Baba, G. M. Argentina, W. E. Courtney, G. F. Dionne, and D. H. Dionne, IEEE Trans. Magn. 8, 83 (1972).   DOI
6 Y. Suzuki, G. Hu, R. B van Dover, and R. J. Cava. J. Magn. Magn. Mater. 191, 1 (1999).   DOI   ScienceOn
7 K. P. Chae, W. K. Kim, J. G. Lee, and Y. B. Lee, Hyperfine Interactions 136, 65 (2001).   DOI
8 V. Nivoix and B. Gillot, Mater. Chem. Phys. 63, 24 (2000).   DOI   ScienceOn
9 S. V. Salvi and V. P. Khanolkar, Proceddings, 5th Int. Conf. Ferrites, Bombay, India (1989) pp.459.
10 M. Maisnam, S. Phanjoubam, H. N. K. Sarma, C. Prakash, L. R. Devi, and O. P. Thakur, Materials Letter 58, 2412 (2004).   DOI   ScienceOn
11 M. Nohair, D. Aymes, P. Perriat, and B. Gillot, Vibrational Spect. 9, 181 (1995).   DOI   ScienceOn
12 L. M. Letyuk, Poroshk, Metall. 8, 59 (1975).
13 M. Maisnam, S. Phanjoubam, H. N. K. Sarma, L. R. Devi, O. P. Thakur, and C. Prakash, Physica B 352, 86 (2004).   DOI   ScienceOn