Ni-rich cathode materials have been developed as the most promising candidates for next-generation cathode materials for lithium-ion batteries because of their high capacity and energy density. In particular, the electrochemical performance of lithium-ion batteries could be enhanced by increasing the contents of nickel ion. However, there are still limitations, such as low structural stability, cation mixing, low capacity retention and poor rate capability. Herein, we have successfully developed the nanorod-type Ni-rich cathode materials by using co-precipitation method. Particularly, the nanorod-type primary particles of LiNi0.7Co0.15Mn0.15O2 could facilitate the electron transfer because of their longitudinal morphology. Moreover, there were holes at the center of secondary particles, resulting in high permeability of the electrolyte. Lithium-ion batteries using the prepared nanorod-type LiNi0.7Co0.15Mn0.15O2 achieved highly improved electrochemical performance with a superior rate capability during battery cycling.
The present article is concerned with the overview of the chemically/surface modified cubic spinel $LiMn_2O_4$ as a cathode electrode far lithium ion secondary batteries. Firstly, this article presented a comprehensive survey of the cubic spinel structure and its correlated electrochemical behaviour of $LiMn_2O_4$. Subsequently, the various kinds of the chemically/surface modified $LiMn_2O_4$ and their electrochemical characteristics were discussed in detail. Finally, this article reviewed our recent research works published on the mechanism of lithium transport through the chemically/surface modified $Li_{1-\delta}Mn_2O_4$ electrode from the kinetic view point by the analyses of the experimental potentiostatic current transients and ac-impedance spectra.
Transition metal sulfide materials have emerged as a new anode material for Li secondary batteries owing to their high capacity and rate capability facilitated by fast Li-ion transport through the layered structure. Among these materials, niobium disulfide (NbS2) has attracted much attention with its high electrical conductivity and high theoretical capacity (683 mAh g-1). In this study, we propose a facile synthesis of FexNbS2/C composite via simple ball milling and heat treatment. The starting materials of FeS and Nb were reacted in the first milling step and transformed into an Fe-Nb-S composite. In the second milling step, activated carbon was incorporated and the sulfide was crystallized into FexNbS2 by heat treatment. The prepared materials were characterized by X-ray diffraction, electron spectroscopies, and X-ray photoelectron spectroscopy. The electrochemical test results reveal that the synthesized FexNbS2/C composite electrode demonstrates a high reversible capacity of more than 600 mAh g-1, stable cycling stability, and excellent rate performance for Li-ion battery anodes.
The spinel material $Li_4Ti_5O_{12}$ has attracted considerable attention as an anode electrode material for many battery applications owing to its light weight and high energy density. However, the real capacity of $Li_4Ti_5O_{12}$ powder as determined by the solid-state method is lower than the ideal capacity. In this study, we investigated the effect of the dopants in M-doped spinel $Ba_xLi_{4-2x}Ti_5O_{12}$(x=0.005, 0.05, 0.1) powders prepared by the solid-state reaction method and used as the anode material in lithiumion batteries. The results confirmed the effect of the Ba and Sr dopants on the powder properties of the spinel $Li_4Ti_5O_{12}$, which exhibited a pure spinel structure without any secondary phase in its XRD pattern. Moreover, the electrochemical properties of the spinel M-LTO materials were investigated using a half cell. The electrochemical data show that cells with anodes made of undoped $Li_4Ti_5O_{12}$ and Ba- and Sr-doped $Li_4Ti_5O_{12}$ have discharge capacities of 97, 130, and 112 mAh/g, respectively, at the first cycle. Moreover, the Ba- and Sr-doped spinel $Li_4Ti_5O_{12}$ demonstrated good properties in the mid-voltage range at 1.55 V, showing stable cyclic voltammogram properties which surpassed those of the same material without Ba or Sr at 1 C after 100 cycles.
Li-ion batteries have been gaining increasing importance, driven by the growing utilization of renewable energy and the expansion of electric vehicles. To meet market demands, it is essential to ensure high energy density and battery safety. All-solid-state batteries (ASSBs) have attracted significant attention as a potential solution. Among the advantages, they operate with an ion-conductive solid electrolyte instead of a liquid electrolyte therefore significantly reducing the risk of fire. In addition, by using high-capacity alternative electrode materials, ASSBs offer a promising opportunity to enhance energy density, making them highly desirable in the automotive and secondary battery industries. In ASSBs, Li metal can be used as the anode, providing a high theoretical capacity (3860 mAh/g). However, challenges related to the high interfacial resistance between Li metal and solid electrolytes and those concerning material degradation during charge-discharge cycles need to be addressed for the successful commercialization of ASSBs. This review introduces and discusses the interfacial reactions between Li metal and solid electrolytes, along with research cases aiming to improve these interactions. Additionally, future development directions in this field are explored.
Silicon has been developed as an alternate anode material for lithium secondary batteries. A simple approach to improve the electrical contact of silicon powder has described. Carbon-coated and silver-coated silicon have been prepared by chemical vapor deposition and electroless plating respectively. Assembled cells, which consisted of surface modified silicon, lithium foil and $Li^+$ contained organic electrolyte, have been studied using electrochemical methods. Carbon-coated silicon was improved in the electrochemical performance such as reversibility and resistance compared to surface-unmodified silicon.
The various expanded graphites (EGs) was prepared and applied as anode material for high power Li-ion secondary battery (LIB). By changing the processing conditions of EG, a series of EG with different structure were produced, showing the changed electrochemical properties. The charge-discharge test showed that the initial reversible capacity of EG anodes prepared at the suitable conditions was over 400 mAh/g and the charge capacity at 5 C-rate was 83.2 mAh/g. These values demonstrated the much improved electrochemical properties as compared with those for the graphite anode of 360 mAh/g and 19.4 mAh/g, respectively, showing the possibility of EG anode materials for high power LIB.
[ $LiFePO_4$ ] is one of the promising materials for cathode material of secondary lithium batteries due to its high energy density, low cost, environmental friendliness and safety. $LiFePO_4$ was synthesized by the solid-state reaction method at 500 - 800°C. The crystal structure of $LiFePO_4$ was analyzed by X-ray powder diffraction. The samples synthesized at 600 and $700^{\circ}C$ showed a single phase of a olivine structure. The particle sizes were increased and the specific surface areas were decreased with heating temperatures. The electrochemical performance was investigated by coin cell test. The discharge capacities at 0.1 C-rate were 118 mAh/g and 112 mAh/g at $600^{\circ}C,\;700^{\circ}C$, respectively. In an attempt to improve the electrical conductivity of cathode materials, $LiFePO_4/graphite$ composite was prepared with various graphite contents. The electrical conductivity and discharge capacity were increased with increasing the graphite contents in composite samples. The rate capabilities at high current densities were also improved.
Lithium ion Batteries commercially available since the early nineties in Japan are going to be more and more important for portable electronic devices and even EV applications. Today several companies around the world are working hard to join to market for Lithium secondary batteries. Based on the growing interest for commercial use of batteries also the materials have to be reviewed in order to meet large scale production needs. The requirements especially for electrolytes for lithium batteries are extremely high. The solvents and the lithium salts should be of highest purity. So the supply of these chemicals including packaging, transportation and storage but also the handling in production are critical items in this field. Frolic impurities are very critical for LiPF6 based electrolytes. The influence of water is tremendous. But also the other protic impurities like alcoholes are playing an Important role for the electrolyte quality. The reaction of these species with LiPF6 leads to formation of HF which further reacts with cathode materials (spinel) and anode. To understand the role of the protic impurities more clearly the electrolyte was doped with such compounds and was analyzed for protic impurities and HF. These results which directly show the relation between impurities and quality will be presented and discussed. In addition several investigations on different packaging materials as well as methods to analyze and handle the sensititive material will be addressed. These questions which are only partly discussed in literature so far and never been investigated systematically cover some of the key parameters for understanding of the battery chemicals. This investigation and understanding however is of major importance for scientist and engineers in the field of Lithium ion and Lithium polymer batteries.
Cut-off 전압 변화에 따른 충방전 특성을 알아보기 위하여 Mn을 다른 전이 금속이 Co와 Ni로 소량 치환시킨 Li(M $n_{1-{\delta}}$$n_{\delta}$)$_2$$O_4$(M=Ni, Co, $\delta$=0, 0.05, 0.1, 0.2)를 고상 반응법으로 80$0^{\circ}C$에서 48시간 동안 유지하여 합성하였다. 충방전의 cut-off 전압은 2.5~4.4V, 3.0~4.5V, 3.5~4.5V, 3.5V~4.7V의 네 가지 전압범위고 하였다. 충방전 실험결과, Li(M $n_{1-{\delta}}$$n_{\delta}$)$_2$$O_4$의 용량은 각각 Co와 Ni의 $\delta$=0.1에서 최대를 보였다. Co 치환 조성 재료와 순물질 모두에서 최대의 용량을 보인 cut-off 전압대는 3.5~4.5V 이었는데 이때의 Li(M $n_{0.9}$$Co_{0.1}$)$_2$$O_4$와 LiM $n_2$$O_4$의 초기 충전용량과 초기 방전용량은 각각 118, 119mAh/g과 114, 104mAh/g 이었다. 또한 모든 cut-off 전압대에서 Li(M $n_{0.9}$$Co_{0.1}$)$_2$$O_4$는 순수한 LiM $n_2$$O_4$보다 더 높은 용량과 우수한 싸이클 성능을 보였으며 그 결과는 밀착형 전지구성에서도 일치하였다.하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.