• Title/Summary/Keyword: Li-gu

Search Result 394, Processing Time 0.027 seconds

Preparation and Electrochemical properties of LiMn2O4 cathode of Lithium ion battery for Electric vehicles

  • Jeong, In-Seong;Gu, Hal-Bon
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.934-937
    • /
    • 1998
  • Charge/discharge property of LiMn2O4 was investigated with LiMn2O4/Li cell for use of lithium ion battery in electric vehicle. LiMn2O4 calcined at $800^{\circ}C$ for 36hr show high charge/discharge capacity and excellent cycle stability than that of others. This is found to be in agreement with expectation in the X-ray diffraction analysis. In addition, the kind and volume of conductive agent involved in LiMn2O4 cathode is excellent at super-s-black and 20wt%, respectively.

  • PDF

Electrochemical Performance of Lithium Iron Phosphate by Adding Graphite Nanofiber for Lithium Ion Batteries

  • Wang, Wan Lin;Jin, En Mei;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.121-124
    • /
    • 2012
  • Olivine type $LiFePO_4$ cathode material was synthesized by solid-state reaction method including one-step heat treatment. To improve the electrochemical characteristics, graphite nanofiber (GNF) was added into $LiFePO_4$ cathode material. The structure and morphological performance of $LiFePO_4$ were investigated by X-ray diffraction (XRD); and a field emission-scanning electron microscope (FE-SEM). The synthesized $LiFePO_4$ has an olivine structure with no impurity, and the average particle size of $LiFePO_4$ is about 200~300 nm. With graphite nanofiber added, the discharge capacity increased from 113.43 mAh/g to 155.63 mAh/g at a current density of 0.1 $mA/cm^2$. The resistance was also significantly decreased by the added graphite nanofiber.

Electrochemical Properties of $LiFePO_4$ and $LiM_xFe_{1-x}PO_4$ Cathode Materials for Lithium Polymer Batteries (리튬 폴리머 전지용 정극활물질 $LiFePO_4$$LiM_xFe_{1-x}PO_4$의 전기화학적 특성)

  • Zhao, Xing Guan;Jin, En Mei;Park, Kyung-Hee;Gu, Hal-Bon;Park, Bo-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.133-133
    • /
    • 2009
  • Phospho-olivine $LiFePO_4$ and $LiTi_{0.1}Fe_{0.9}PO_4$ cathode materials were prepared by the solid-state reaction. To improve conductivity we carried out electrochemical performance of $Ti^{2+}$ doped $LiFePO_4$. The $Ti^{2+}$ doped $LiFePO_4$ started 3.36 V of flat voltage on discharge curve and showed a gentle decline in the curve compared to undoped $LiFePO_4$ without great changes of capacity. And so, we could achieve to improve electrochemical performance as reversible, cycle life. Similarly, $LiFePO_4$ doping with $Ti^{2+}$ was showed the effect of dopant which was obtained the improved discharge capacity as 140 mAh/g and good cycling performance.

  • PDF

Electrochemical properties of $Li_2O-P_2O_5-V_2O_5$ Glass-ceramics by Addition of $Bi_2O_3$ ($Bi_2O_3$첨가에 따른 $Li_2O-P_2O_5-V_2O_5$ 결정화유리의 전기화학적 특성변화)

  • Son, Muong-Mo;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.797-800
    • /
    • 2002
  • Instead of a solution process producing amorphous $LiV_3O_8$ form, we prepared Lithium vanadate glass by melting $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ composition in pt. crucible and by quenching on the copper plate. From the crystallization of $Li_2O-P_2O_5-V_2O_5$ and $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$, we could abtain glass-ceramics having crystal phase, LiV3O8 from glass matrix. The material heat-treated at lower-temperature, $250^{\circ}C$ had less crystalline and lower capacity, But the material heat-treadted at higher-temperature, $330^{\circ}C$ had higher capacity and $Li_2O-P_2O_5-V_2O_5$ glass-ceramics had higher capacity than $Li_2O-P_2O_5-Bi_2O_3-V_2O_5$ glass-ceramics.

  • PDF

Electrochemical Characteristics of Lithium-ion Battery with Doped Graphite Nanofiber (카본 나노파이버가 도핑된 리튬이온전지의 전기화학적 특성)

  • Wang, Wan Lin;Jin, En Mei;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.137.1-137.1
    • /
    • 2011
  • 올리빈 구조의 $LiFePO_4$ 정극 활물질은 $650^{\circ}C$에서 고상법으로 제조되었다. $LiFePO_4$의 전자전도도를 향상시키기 위하여 graphite nanofiber(GNF)를 각각 3wt%, 5wt%, 7wt%, 9wt% 첨가하여 $LiFePO_4$-C를 제조하였다. 제조된 분말의 입자 형태를 확인하기 위하여 X-ray diffraction(XRD)과 File Electronic Scaning Electromicroscopy(FE-SEM)를 측정하였다. XRD결과로부터 제조된 분말은 모두 순수한 결정 구조를 나타내었고 입자의 크기는 약 200nm였다. 5wt% GNF를 첨가한 $LiFePO_4$-C는 기타 첨가량에 비해 방전용량이 가장 높았다. 첫 사이클의 용량은 151.73mAh/g 나타났고 50 사이클 뒤에도 92% 이상을 유지하고 있었다. 첨가하지 않은 것에 비해 43% 증가하였다. $LiFePO_4$-C(3wt%), $LiFePO_4$-C(7wt%), $LiFePO_4$-C(9wt%)의 첫 사이클 방전용량은 각각 147.94mAh/g, 136.64mAh/g, 121.07mAh/g 나타났다. $LiFePO_4$-C(5wt%)에 비해 용량은 떨어쪘지만 순수한 $LiFePO_4$보다 많이 높았다. 임피던스 결과를 보면 기타 첨가량에 비해 $LiFePO_4$-C(5wt%)의 저항 제일 낮았다. 이는 충방전 결과와 일치하였다. graphite nanofiber의 첨가로 인하여 $LiFePO_4$ 정극 활물질의 전자전도도가 높아지고, 따라서 전기화학적 특성도 크게 향상되었다.

  • PDF

Charge/discharge Properties As a Function of Synthetic Conditions of $LiMnO_2$ for Lithium Polymer Batteries (리튬 폴리머 전지용 $LiMnO_2$의 합성조건에 따른 충방전 특성)

  • Cho, Young-Jai;Kim, Jong-Uk;Park, Gye-Choon;Wee, Sung-Dong;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.541-544
    • /
    • 2001
  • Orthorhombic $LiMnO_2$ was synthesized by solid-state reaction using $LiOH{\cdot}H_{2}O$ and $Mn_{2}O_{3}$ as starting material. Its electrochemical properties as cathode in lithium batteries were examined. X-ray diiffraction revealed that the $LiMnO_2$ compound showed a well-defined orthorhombic phase of a space group with Pmnm. The capacity of $LiMnO_2$ agreed well with its specific surface area and grinding treatment was effective in improving cycling performance. For lithium polymer battery applications. the $LiMnO_2$ cell was characterized electrochemically by charge-discharge experiments. And the relationship between the characteristics of powder and electrochemical properties was studied in this research. A maximum discharge capacity of $160-170mAhg^{-1}$ for $LiMnO_2/Li$ cell was achieved.

  • PDF

Charge/discharge Properties of $Li_xV_3O_8$ Composite Cathode for Lithium Polymer Batteries (리튬 폴리머 전지용 $Li_xV_3O_8$ Composite Cathode의 충방전 특성)

  • Park, B.G.;Kim, J.U.;Park, G.C.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1591-1593
    • /
    • 1997
  • The purpose of this study is to research and develop $Li_xV_3O_8$ composite cathode for lithium polymer battery. We investigated electrochemical, interfacial properties and charge/discharge cycling of $Li_xV_3O_8$/SPE/Li cell. The radius of semicircle associated with the interfacial resistance of $Li_xV_3O_8$/SPE/Li cell increased very slowly during discharge process from 100% SOC to 90% SOC. And then the cell resistance was increased at discharge process from 10% SOC to 0% SOC. The discharge capacity based on $Li_xV_3O_8$ was 212mAh/g at 15th cycle. The $Li_xV_3O_8$/SPE/Li cell has a good properties.

  • PDF

The Electrochemical Properties of $Li_xNi_{2-x}O_2$ prepared by Heat Treatment of LiOH and $Ni(OH)_2$ (LiOH와 $Ni(OH)_2$의 열처리에 의해 제조된 $Li_xNi_{2-x}O_2$의 전기화학적 특성)

  • Lim, S.H.;Lee, J.Y.;Yoon, S.S.;Son, J.I.;Gu, H.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.224-226
    • /
    • 1996
  • The purpose of this study is to research and develop $Li_xNi_{2-x}O_2$ cathode for lithium rechargeable battery. We investigated XRD, cyclic voltammetry, AC impedance response and charge/discharge cycling of $Li_xNi_{2-x}O_2$/Li cells. The cell resistance was decreased much at initial charge process from 100% SOC to 0% SOC. The discharge capacity based on $Li_xNi_{2-x}O_2$ of 1st and 15th cycles was 135mAh/g and 108mAh/g, respectively. The $Li_xNi_{2-x}O_2$/Li cell had a good properties.

  • PDF

Electrochemical properties of $LiCr_xMn_{1-x}O_2$ cathode materials for lithium ion battery (리튬 이온 이차전지용 $LiCr_xMn_{1-x}O_2$ 정극활물질의 전기 화학적 특성)

  • Jin, En-Mei;Jeon, Yeon-Su;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.418-419
    • /
    • 2005
  • $\o-LiMnO_2$ is known to have poor cycle performance causing the irreversible phase transformation on cycling. In this paper, the effect of chemical substitution on improving cycle performance of $o-LiMnO_2$ was studied at the compositions of $LiCr_xMn_{1-x}O_2$(x=0, 0.1, 0.2, 0.4). XRD is showed that structure of $LiCr_xMn_{1-x}O_2$ transformed from orthorhombic to spinel according to the increase of substitute degree. For lithium ion battery applications, $LiCr_xMn_{1-x}O_2$/Li cell were characterized electrochemically by charge/discharge cycling.

  • PDF

The Advanced Research on Electrochemical Properties of $LiFePO_4$ Cathode Materials for Lithium Polymer Batteries. (리튬폴리머전지용 정극활물질 $LiFePO_4$의 전기화학적 특성 향상 연구)

  • Jun, Dae-Kyoo;Jin, En-Mei;Han, Zhen-Ji;Baek, Hyung-Ryul;Gu, Hal-Bon;Park, Bok-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.368-369
    • /
    • 2006
  • The pure $LiFePO_4$, carbon added $LiFePO_4(LiFePO_4/C$) and pyrene added $LiFePO_4(LiFePO_4/P$) are synthesized by using solid-state reaction. XRD patterns show no impurity phase in the three kinds of the cathode materials. The 10wt% pyrene added $LiFePO_4$ shows around 140mAh/g of discharge capacity at 3rd cycle compared to the pure $LiFePO_4$. The carbon added $LiFePO_4$ shows 145mAh/g of discharge capacity at 3rd cycle and stable cycle-life compared to the others.

  • PDF