• 제목/요약/키워드: Li-Ion

검색결과 1,321건 처리시간 0.024초

Ex-situ 7Li MAS NMR Study of Olivine Structured Material for Cathode of Lithium Ion Battery

  • Lee, Youngil;An, JiEun;Park, Seul-A;Song, HyeYeong
    • 한국자기공명학회논문지
    • /
    • 제18권2호
    • /
    • pp.63-68
    • /
    • 2014
  • $^7Li$ nuclear magnetic resonance (NMR) spectra have been observed for $LiMPO_4$ (M = Fe, Mn) samples, as a promising cathode material of lithium ion battery. Observed $^7Li$ shifts of $LiFe_{1-x}Mn_xPO_4$ (x = 0, 0.6, 0.8, and 1) synthesized with solid-state reaction are compared with calculated $^7Li$ shift ranges based on the supertranferred hyperfine interaction of Li-O-M. Ex situ $^7Li$ NMR study of $LiFe_{0.4}Mn_{0.6}PO_4$ in different cut-off voltage for the first charge process is also performed to understand the relationship between $^7Li$ chemical shift and oxidation state of metals affected by delithiation process. The increment of oxidation state for metals makes to downfield shift of $^7Li$ by influencing the supertranferred hyperfine interaction.

Li Ion Diffusivity and Improved Electrochemical Performances of the Carbon Coated LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Oh, Si-Hyung;Jang, Ho;Cho, Won-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.836-840
    • /
    • 2011
  • This study examines the effects of a carbon coating on the electrochemical performances of $LiFePO_4$. The results show that the capacity of bare $LiFePO_4$ decreased sharply, whereas the $LiFePO_4$/C shows a well maintained initial capacity. The Li ion diffusivity of the bare and carbon coated $LiFePO_4$ is calculated using cyclic voltammetry (CV) to determine the correlation between the electrochemical performance of $LiFePO_4$ and Li diffusion. The diffusion constants for $LiFePO_4$ and $LiFePO_4$/C measured from CV are $6.56{\times}10^{-16}$ and $2.48{\times}10^{-15}\;cm^2\;s^{-1}$, respectively, indicating considerable increases in diffusivity after modifications. The Li ion diffusivity (DLi) values as a function of the lithium content in the cathode are estimated by electrochemical impedance spectroscopy (EIS). The effects of the carbon coating as well as the mechanisms for the improved electrochemical performances after modification are discussed based on the diffusivity data.

제일원리 전산모사를 통한 리튬 이온 전지의 LiMn2O4 전극-전해질 계면 반응 분석 (First-principles Study on the Formation of Solid-Electrolyte Interphase on the LiMn2O4 Cathode in Li-Ion Batteries)

  • 최대현;강준희;한병찬
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.97-97
    • /
    • 2016
  • Development of advanced Li-ion battery cells with high durability is critical for safe operation, especially in applications to electric vehicles and portable electronic devices. Understanding fundamental mechanism on the formation of a solid-electrolyte interphase (SEI) layer, which plays a substantial role in the electrochemical stability of the Li-ion battery, in a cathode was rarely reported unlike in an anode. Using first-principles density functional theory (DFT) calculations and ab-initio molecular dynamic (AIMD) simulations we demonstrate atomic-level process on the generation of the SEI layer at the interface of a carbonate-based electrolyte and a spinel $LiMn_2O_4$ cathode. To accomplish the object we calculate the energy band alignment between the work function of the cathode and frontier orbitals of the electrolyte. We figure out that a proton abstraction from the carbonate-based electrolyte is a critical step for the initiation of an SEI layer formation. Our results can provide a design concept for stable Li-ion batteries by optimizing electrolytes to form proper SEI layers.

  • PDF

The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo;Jo, In-Ho;Lee, Sang-Hun;Jung, Yang-Il;Moon, Jei-Kwon;Choi, Wang-Kyu
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권4호
    • /
    • pp.245-250
    • /
    • 2016
  • The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.

LiAlH4-PVDF 전해질 복합체의 열확산 및 전기화학적 특성평가 (Evaluation of Thermal Diffusivity and Electrochemical Properties of LiAlH4-PVDF Electrolyte Composites)

  • 황준현;홍태환
    • 한국수소및신에너지학회논문집
    • /
    • 제33권5호
    • /
    • pp.574-582
    • /
    • 2022
  • A lithium-ion battery exhibits high energy density but has many limitations due to safety issues. Currently, as a solution for this, research on solid state batteries is attracting attention and is actively being conducted. Among the solid electrolytes, sulfide-based solid electrolytes are receiving much attention with high ion conductivity, but there is a limit to commercialization due to the relatively high price of lithium sulfide, which is a precursor material. This study focused on the possibility of relatively inexpensive and light lithium hydride and conducted an experiment on it. In order to analyze the characteristics of LiAlH4, ion conductivity and thermal stability were measured, and a composites mixed with PVDF, a representative polymer electrolyte, was synthesized to confirm a change in characteristics. And metallurgical changes in the material were performed through XRD, SEM, and BET analysis, and ion conductivity and thermal stability were measured by EIS and LFA methods. As a result, Li3AlH6 having ion conductivity higher than LiAlH4 is formed by the synthesis of composite materials, and thus ion conductivity is slightly improved, but thermal stability is rapidly degraded due to structural irregularity.

LTP계 결정화유리의 Ag이온교환에 따른 항균특성 (The Anti-Bacterial Properties of LTP Crystallized Glass by Ag Ion Exchange)

  • 권면주;윤영진;강원호
    • 한국산학기술학회논문지
    • /
    • 제3권3호
    • /
    • pp.183-188
    • /
    • 2002
  • Antibacterial glass ceramics composed of $5Li_2O{\cdot}36CaO{\cdot}20TiO_2{\cdot}27P_2O_5$ were Prepared. After ion exchange in the $AgNO_3$solution, crystallization phases were $AgTi_2(PO_4)_3$, $LiTi_2(PO_4)_3$ and $Ca_3(PO_4)_2$. In case of ion exchange, the crystallization phases started to be transformed from $LiTi_2(PO_4)_3$ to $AgTi_2(PO_4)_3$in 0.5 mole $AgNO_3$ solution and the transformation was almost completed in 1.0 mole. ion exchange rate of glass-ceramics powder, considering ion exchange time, was more fast than that of bulk. The bacteriostatic effect of the glass-ceramics on Staphyloroccus aureus and Salmonella typhi bacteria was more excellent than that of glass when the crystallization phase was transformed from LTP to AgTP.

  • PDF

Preparation and Properties of Inorganic-organic Hybrid $Li^+$ Ion Conductor by Sol-gel Process

  • Nishio, Keishi;Miyazawa, Tsutomu;Watanabe, Yuichi;Tsuchiya, Toshio
    • The Korean Journal of Ceramics
    • /
    • 제7권1호
    • /
    • pp.1-5
    • /
    • 2001
  • Inorganic-organic hybrid Li$^+$ ion conductors were prepared by the sol-gel process. Tetramethyl orthosilicate (TMOS), polyethylene glycol 200 (PEG$_200$) and lithium bis (trifluoro-methylsulfony) imide were used as raw materials and $H_2O$ was used as a solvent. Hybrid Li$^+$ ion conductor prepared by the sol-gel process showed very high ion conductivities of log${\sigma}_R.T$(S/cm)=-3.73, log${\sigma}_60$(S/cm)=-3.00 at room temperature and $60^{\circ}C$, respectivery. Decomposition voltage was 3.1 V.

  • PDF

전류적산법과 OCV 방법을 결합한 Li-Ion 배터리의 충전상태 추정 (State of Charge Estimation of Li-Ion Battery Based on CIM and OCV Using Extended Kalman Filter)

  • 박정호;차왕철;조욱래;김재철
    • 조명전기설비학회논문지
    • /
    • 제28권11호
    • /
    • pp.77-83
    • /
    • 2014
  • The Estimation of State of Charge(SOC) for batteries is an important aspect of a Battery Management System(BMS). A method for estimating the SOC is proposed in order to overcome the individual disadvantages of the current integral and Open Circuit Voltage(OCV) estimation methods by combining them using Extended Kalman filter(EKF). The non-linear characteristics of the Li-Ion RC battery model used in this study is also solved through EKF. The proposed method is simulated in a Matlab environment with a Li-Ion Kokam battery (3.7V, 1,500mAh). Results showed that there is an improvement in the estimation error when using the proposed model compared to the conventional current integral method.

다양한 형태의 AAO membrane 제조 및 리튬이온 전지의 분리막 응용 연구 (Study on the Fabrication of Various AAO Membranes for the Application of Li-ion Battery Separator)

  • 김문수;임경민;하재윤;김용태;최진섭
    • 한국표면공학회지
    • /
    • 제54권5호
    • /
    • pp.213-221
    • /
    • 2021
  • In order to improve the energy density and safety of Li-ion batteries, the development of a separator with high thermal stability and electrolyte wettability is an important desire. Thus, the ceramic separator to replace the polymer type is one of the most promising materials that can prevent short-circuit caused by the formation of dendrite and thermal deformation. In this study, we introduce the fabrication of various anodic aluminum oxide membranes for the application of Li-ion battery separators with the advantages of improved mechanical/thermal stability, wettability, and a high rate of Li+ migration through the membrane. Two different types of through-holes and branched anodic aluminum oxide membranes are well used in lithium-ion battery separators, however, branched anodic aluminum oxide membranes exhibit the most improved performance with capacity (126.0 mAh g-1 @ 0.3C), capacity drop at the high C-rate (30.6 %), and low internal resistance (8.2 Ω).

Polarization Behavior of Li4Ti5O12 Negative Electrode for Lithiumion Batteries

  • Ryu, Ji-Heon
    • Journal of Electrochemical Science and Technology
    • /
    • 제2권3호
    • /
    • pp.136-142
    • /
    • 2011
  • $Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between $Li_2CO_3$ and anatase $TiO_2$ for applications in lithium-ion batteries. The rate capability is measured and the electrode polarization is analyzed through the galvanostatic intermittent titration technique (GITT). The rate characteristics and electrode polarization are highly sensitive to the amount of carbon loading. Polarization of the $Li_4Ti_5O_{12}$ electrode continuously increases as the reaction proceeds in both the charge and discharge processes. This relation indicates that both electron conduction and lithium diffusion are significant factors in the polarization of the electrode. The transition metal (Cu, Ni, Fe) ion added during the synthesis of $Li_4Ti_5O_{12}$ for improving the electrical conductivity also greatly enhances the rate capability.