• 제목/요약/키워드: Li-Al-Si glass and ceramic

검색결과 32건 처리시간 0.017초

Sol-Gel 법에 의한 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 다공성 결정화 유리의 제조 : (II) Sol-Gel 법에 의해 제조된 $Li_2O-Al_2O_3-TiO_2-SiO_2$ 계 괴상겔의 결정화 (Preparation of Glass-Ceramics in $Li_2O-Al_2O_3-TiO_2-SiO_2$ System by Sol-Gel Technique : (II) Crystallization of $Li_2O-Al_2O_3-TiO_2-SiO_2$ Monolithic Gel Prepared by Sol-Gel Method)

  • 조훈성;양중식
    • 한국세라믹학회지
    • /
    • 제32권4호
    • /
    • pp.507-515
    • /
    • 1995
  • The monolithic dry gels of the Li2O-Al2O3-TiO2-SiO2 system were prepared by the sol-gel technique using metal alkoxides as starting materials to obtain monolithic glass-ceramics at low temperature without melting. Activation energy for the crystal growth of the gel with 6.05% TiO2, nucleating ageng, for the preparation of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was 101.14kcal/mol. As a result of the analysis of DTA & XRD, it was confirmed that the crytallization of Li2O-Al2O3-TiO2-SiO2 system glass-ceramic was the most efficient when 6.05% TiO2, nucleating agent, was added. $\beta$-eucryptite solid solution crystals and $\beta$-spodumene solid solution crystals were detected in the sample heat treated above 85$0^{\circ}C$. The sintered gel heat treated at 85$0^{\circ}C$ had the specific surface area of 185$m^2$/g, the pore volume of 0.19cc/g and the average pore radius of 20.8$\AA$. This shows that the sintered gel is also comparatively porous material. In temperature range of 25~85$0^{\circ}C$ thermal expansion coefficient of the specimen which was crystallized for 10hrs at 85$0^{\circ}C$ was 6.7$\times$10-7/$^{\circ}C$, which indicated that the crystallized specimen was turned out to be the glass-ceramic with low thermal expansion.

  • PDF

Li-Al-Si 함유 유리세라믹 순환자원으로부터 Ca계열 염배소법 및 이에 따른 수침출 공정에 의한 리튬의 회수 연구 (A Study on the Recovery of Lithium from Secondary Resources of Ceramic Glass Containing Li-Al-Si by Ca-based Salt Roasting and Water Leaching Process)

  • 주성호;신동주;이동석;신선명
    • 자원리싸이클링
    • /
    • 제32권1호
    • /
    • pp.42-49
    • /
    • 2023
  • Li-Al-Si를 함유한 유리세라믹 순환자원은 인덕션, 방화유리, 비젼냄비 등 리튬의 전체 소비량 중 14%로 리튬이온전지 다음으로 많이 쓰인다. 따라서 리튬의 수요가 폭발하고 있는 현재 새로운 리튬 자원을 찾아야 하고 이로부터 리튬의 회수 연구가 필요하다. 본 연구는 이러한 맥락하에 Li을 함유한 새로운 순환자원인 Li-Al-Si 유리세라믹으로부터 리튬을 회수하기 위한 연구를 수행하였다. 본 연구에서는 1.5% Li, 9.4% Al, 28.9% Si를 함유한 Li-Al-Si 유리세라믹 중 방화유리를 원료물질로 사용하였다. 방화유리로부터 리튬을 회수하기 위한 공정은 크게 칼슘 염을 투입한 건식 배소 공정과 수침출 공정으로 나뉜다. 325 mesh 이하로 분쇄된 방화유리 시료를 열처리 전과 열처리 후 칼슘 염을 투입하여 침출 실험을 비교 진행하였고 칼슘 염과 Li-Al-Si 유리세라의 투입비율에 따른 침출율, 칼슘 염 배소 온도에 따른 침출 연구도 비교 수행하였다. 수침출 연구에서는 온도, 시간, 고액비, 그리고 연속 침출횟수에 따라 리튬의 침출율 및 회수율을 비교하였다. 그 결과 Li-Al-Si를 함유한 유리세라믹 방화유리는 열처리를 반드시 수행하여 베타 형태의 스포듀민으로 상변화 시켜야 하며 이로부터 CaCO3 염을 Li-Al-Si를 함유한 유리세라믹 방화유리와 6:1의 비율로 투입하여 1000℃이상에서 배소한 후 4회 이상 연속 침출하여 리튬의 회수율을 98% 이상 획득하였고 이때 리튬의 농도는 200mg/L였다.

Li2O-Al2O3-SiO2계 결정화 유리의 특성(I) (Properties of Li2O-Al2O3-SiO2 Glass Ceramic System(I))

  • 양준환;정헌생
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.431-436
    • /
    • 1988
  • The properties of scid-resistance to boiling HCl, thermal expansion coefficient and softening temperature of mother glass and glass-ceramic of LAS systems were investigated at the contents of SiO2 varing from 57 to 67wt%. The nucleation and growth of crystalline phase of LAS compositions were carried out at 50$0^{\circ}C$ and $700^{\circ}C$. The crystalline phase jconsists of lithium alumino silicate, lithum meta silicate, lithium disilicate, $\alpha$-crystobalite and $\alpha$-quartz. Lithium alumino silicate(virgilite) is the major crystalline phase in the glass ceramics. The degree of acid resistant property was increased in proportion with the silica content for both glass and ceramics. Glass-ceramic gives lower acid-resistance and thermal expansion coefficient while softening temperature shows higher for glass-ceramic than for mother glass.

  • PDF

결정화 유리에 관한 연구 저 Li$_2$O 유리에 관하여 (Studies on the Crystallizing Glass on Low Li$_2$ O Glass)

  • 박용완;이종근;고영신;김정은
    • 한국세라믹학회지
    • /
    • 제13권1호
    • /
    • pp.30-34
    • /
    • 1976
  • In general the chemical composition of glass ceramics in Li2O-Al2O3-SiO2 system is similar to the composition of $\beta$-spodumene (Li2O-Al2O3-4SiO2). With the object to manufacture the glass ceramics which can be produced in the domestic pot the composition of glass was so settled at 1.0 Li2O.0.9Al2O3.6.0SiO2 in order to reduce the contents of Li2O, to prevent the corrosion of the pot and to decrease the cost of raw materials. 0.2 mole and 0.1 mole of the mixture of TiO2 and ZrO2 as nucleants were added to the basic composition of 1.0 Li2O-0.9Al2O3-6.0SiO2. Each sample was divided into two kinds with a TiO2/ZrO2 ratio of 2 to 1 and the other with a TiO2/ZrO2 ratio fo 1 to 1. Thermal expansion coefficient, the most important property of glass ceramics, was tested. The softening point and the melting point of the samples were observed by the use of a heating microscope. The results obtained were as follows. The manufacturing of glass ceramics seems to be possible in the industrial plant using the domestic pot. 1) The composition of the glass which can be melted in the domestic pot process was near 1.0 Li2O.0.9Al2O3.6.0SiO2. 2) The temperature range of crystal creation and crystal growth was between 850-94$0^{\circ}C$, and 5 hours holding the samples at the temperature range was enough to crystallize them. The major crystal was $\beta$-spdumene and there existed petalite partialy. 3) The thermal expansion coefficient fo the crystallized glass was negative. 4) The deforming point of the crystallized glass was 1435$^{\circ}C$.

  • PDF

LI$_2$O-Al$_2$O$_3$-SiO$_2$계 유리의 catalytic crystallization에 미치는 열처리 효과 (The effect of heat treatment on catalytic crystallization in Li$_2$O-Al$_2$O$_3$-SiO$_2$ glass system)

  • 박원규;이채현
    • 한국결정성장학회지
    • /
    • 제6권2호
    • /
    • pp.275-285
    • /
    • 1996
  • The effect of heat-treatment on catalytic crystallization in $LI_2O-Al_2O_3-SiO_2$ glass system over its glass transition temperature was investigated. Glass composition $4Li_2O{cdot}22AL_2O_3{cdot}66SiO_2{cdot}2TiO_2{cdot}2.5ZrO_2{cdot}1.5P_2O_5{cdot}1.0Na_2O{cdot}1.0As_2O_3$ (wt%) was selected and heat-treated at different heating conditions to obtain transparent glass-ceramic. Nucleation and crystallization behaviour of this composition were estimated by differential thermal analysis (DTA) and X-ray diffractometer (XRD) and its thermal expansion coefficients were measured by Dilatometer. As a result, glass transition temperature was $730^{\circ}C$ and two maximum nucleation temperatures were estimated at $730^{\circ}C$ and 82$0^{\circ}C$ using JMA(Johson-Mehl-Avrami) equation by DTA. $ZrTiO_4$ $\beta$-Quartz solid solution and $\beta$-Spodumene crystals were identified by XRD. The optimum crystallization temperature was 92$0^{\circ}C$ and three step heating schedule was expected to be useful to obtain transparent glass-ceramic.

  • PDF

$Li_{2}O-Al_{2}O_{3}-SiO_{2}$계 저팽창 결정화 유리의 특성 (The properties of a low expansion glass ceramics of $Li_{2}O-Al_{2}O_{3}-SiO_{2}$ system)

  • 김복희;고정훈;남오정;강우진;이창훈
    • 한국결정성장학회지
    • /
    • 제19권2호
    • /
    • pp.79-83
    • /
    • 2009
  • 저열팽창계수를 갖는 재료를 개발하기 위하여 $Li_{2}O-Al_{2}O_{3}-SiO_{2}$계 glass-ceramics를 제조하고 그 특성을 조사하였다. 이 계의 유리를 $775^{\circ}C$에서 2시간 가열하여 핵생성시키고 $825{\sim}900^{\circ}C$로 가열하여 2시간 결정화하였다. 결정화 유리의 결정구조는 단일상의 $\beta$-quartz solid solution($Li_{x}Al_{x}Si_{1-x}O_{2}$)이었고, 열팽창계수는 $25{\sim}300^{\circ}C$에서 $4.40{\times}10^{-7}{\sim}1.33{\times}10^{-6}K^{-1}$를, 그리고 $25{\sim}800^{\circ}C$에서는 $1.56{\times}10^{-6}{\sim}2.53{\times}10^{-6}K^{-1}$를 보였으며 저온 영역의 열팽창율보다는 고온 영역의 열팽창율이 더 높은 값을 보였다. 이 계의 결정화 유리의 기계적 강도는 결정화 온도에 의존하지 않고 대체로 110 Mpa의 높은 값을 보였다.

투명 결정화 유리에 관한 연구 -Li2O-Al2O3-SiO2계 조성에 관하여- (Studies on Transparently Crystallized Glass -On Li2O-Al2O3-SiO2 Composition-)

  • 박용완;김건은;연석주;조중희
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.315-322
    • /
    • 1989
  • Li2O-Al2O3-SiO2 system glasses contained P2O5, TiO2 and ZrO2as the nucleating agents were melted and formed. The glass was subsequently heated first to nucleate and then to grow the crystals. At constant nucleating agent content the base glass compositions were varied and the influences of these variations on the crystallization behaviour were investigated. The study was made by measurement of thermal expansion coefficient, differential thermal analysis, X-ray diffraction analysis, scanning electron microscope observation and transmission measurement of crystallized glass specimen in visible region. It was shown that the content of crystalline phase decreased with increasing SiO2 content as well as decresing Li2O in the base glass compositions. As the result of X-ray diffrection analysis, the major crystal was $\beta$-quartz solid solution. The degree of crystallinity which was calculated using the noncrystalline scattering methods increased in S-shape with increasing heat treatment time. This change was similar to that in thermal expansion coefficient. The transmissions of 5mm thick samples were 80-90% in visible ray region.

  • PDF

Sol-Gel법에 의한 Li2O-Al2O3-SiO2계 괴상겔 및 결정화유리의 합성 (Synthesis of Monolithic Gel to Bulk glass-Ceramic in Multicomponent Li2O-Al2O3-SiO2 System)

  • 양중식;작화제부
    • 한국세라믹학회지
    • /
    • 제25권5호
    • /
    • pp.541-551
    • /
    • 1988
  • The purpose of this investigation was to prepare multicomponent monolithic Li-Al-Si gels of composition(mol%) 16.67 Li2O-16.67 Al2O3-66.67 SiO2 and to convert the gels to monolithic glass-ceramic at low temperature without melting. The hydrolysis, DTA, TGA, TMA, SEM, pore distribution, density and the activation energy for crystallization of the glass-ceramic formation with rawmaterials of which tetraethl orhosilicate of networkforming cation(Si) is partially hydrolyzed, aluminum isoproxide and lithium methoxide prepared by Li-metal react with methanol were studied. The results were as follows : 1) Monolithic gels which were added with additional water, resulting in a total water content 2.5 to 3.0 times the stoichiometric amount required to fully hydrolyze the alkoxides. 2) Specimens were dried to form crylinders 60mm in length and 40mm in diameter in about 800 hrs at 5$0^{\circ}C$. 3) $\beta$-eucryptite crystals and $\beta$-spodumene crystals were detected in samples heated above 75$0^{\circ}C$. 4) Within the temperature and range of 25-50$0^{\circ}C$ and 1,00$0^{\circ}C$ the thermal expansion coefficient for crystallized samples were shown as 2.6-5.7$\times$10-7/$^{\circ}C$ and 7.4-12.5$\times$10-7/$^{\circ}C$, respectively. 5) The activation energy for the crystal growth was 11.01kcal/mol at 794$^{\circ}C$ to 85$0^{\circ}C$.

  • PDF

Li2O-Al2O3-SiO2(LAS)계 결정화유리에서 결정크기와 표면조도 관계 (Relationship between Surface Roughness and Crystal size of Li2O-Al2O3-SiO2(LAS) Glass-Ceramic System)

  • 김유진;황성진;김형순
    • 한국재료학회지
    • /
    • 제14권7호
    • /
    • pp.505-510
    • /
    • 2004
  • The glass-ceramic based on LAS($Li_{2}O-Al_{2}O_3-SiO_{2}$) system was observed using SEM(Scanning Electric Microscopy) and AFM(Atomic Force Microscopy) and it was expected to get a correlation between the crystal size and the surface roughness through the result. At heat treatment conditions (the nucleation: $740\~800^{\circ}C$, the crystal growth: $900\~1150^{\circ}C$), the crystal size was increased from 72 to 450 nm so that the mean of surface roughness was also risen from 0.8 to 6.3 nm. Based on the results, the surface roughness of glass-ceramic is controlled by the factors, crystal size, crystallines, and the condition of heat treatment.

$Li_2O$.$Al_2O_3$.$SiO_2$ 계 유리에서 RO치환 및 $R_2O_3$ 첨가에 따른 결정화 특성 (The Crystallization Characteristics Change in $Li_2O$.$Al_2O_3$.$SiO_2$ System Glass-Ceramics when Varying of RO Ratio and Increasing $R_2O_3$)

  • 이종민;김무경;최병현;양중식
    • 한국세라믹학회지
    • /
    • 제22권2호
    • /
    • pp.3-10
    • /
    • 1985
  • In the study the characteristics change of crystallized $Li_2O$.$Al_2O_3$.$SiO_2$ glass-ceramics when varying RO ratio and increasing Al2O3 were investigated to produce a glass-ceramics with high mechanical strength and low thermal expansion. Parent glass was obtained by melting at 1,350~1,40$0^{\circ}C$ for 3 hours and annealing at 45$0^{\circ}C$ and the various physical characteristics were measured. Results were as follows; 1. When ZnO was replaced by MgO thermal expansion coefficient was lowered when increasing ZnO content. 2. Major crystal phase was $\beta$-spodumene the crystal growth mophology was the three dimensional sphere and the activation energy for crystallization was 54.6 Kcal/mol. 3. Parent glass heat-treated at 95$0^{\circ}C$ for 10 hours had ; a) thermal expansion coeff. of $23.2{\times}10^{-7}$/$^{\circ}C$ b)whiteness of 76 c) microhardness of 1,089kg/$mm^2$

  • PDF