• Title/Summary/Keyword: Lexicon

Search Result 273, Processing Time 0.025 seconds

Stochastic Pronunciation Lexicon Modeling for Large Vocabulary Continous Speech Recognition (확률 발음사전을 이용한 대어휘 연속음성인식)

  • Yun, Seong-Jin;Choi, Hwan-Jin;Oh, Yung-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • In this paper, we propose the stochastic pronunciation lexicon model for large vocabulary continuous speech recognition system. We can regard stochastic lexicon as HMM. This HMM is a stochastic finite state automata consisting of a Markov chain of subword states and each subword state in the baseform has a probability distribution of subword units. In this method, an acoustic representation of a word can be derived automatically from sample sentence utterances and subword unit models. Additionally, the stochastic lexicon is further optimized to the subword model and recognizer. From the experimental result on 3000 word continuous speech recognition, the proposed method reduces word error rate by 23.6% and sentence error rate by 10% compare to methods based on standard phonetic representations of words.

  • PDF

Automatic Construction of Korean Two-level Lexicon using Lexical and Morphological Information (어휘 및 형태 정보를 이용한 한국어 Two-level 어휘사전 자동 구축)

  • Kim, Bogyum;Lee, Jae Sung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.12
    • /
    • pp.865-872
    • /
    • 2013
  • Two-level morphology analysis method is one of rule-based morphological analysis method. This approach handles morphological transformation using rules and analyzes words with morpheme connection information in a lexicon. It is independent of language and Korean Two-level system was also developed. But, it was limited in practical use, because of using very small set of lexicon built manually. And it has also a over-generation problem. In this paper, we propose an automatic construction method of Korean Two-level lexicon for PC-KIMMO from morpheme tagged corpus. We also propose a method to solve over-generation problem using lexical information and sub-tags. The experiment showed that the proposed method reduced over-generation by 68% compared with the previous method, and the performance increased from 39% to 65% in f-measure.

An Efficient Korean Morpheme Analyzer and Synthesizer using Dictionary Information and Chart Data Structure (사전 정보와 차트 자료 구조를 이용한 효율적인 형태소 분석기 및 합성기(KoMAS))

  • 김정해;이상조
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.3
    • /
    • pp.123-131
    • /
    • 1994
  • This paper describes on the analysis of morphemes and it's synthesis being constituted of Korean word phrases. To analyze morphemes, we propose the introduction of "morph" for morpheme features in lexicon and the usage of chart data structures. it controls over the generation of unnecessary morpheme, and extracts every possible morpheme unit in a word phrase which minimized lexicon investigation by using heuristic information. Moreover, to synthesize morphemes, it is composed of every possible analyzed morphemes in word phrases to take advantage of speech and union information which can be obtained for program. Therefore, the systhesis of analyzed morphemes were designed to aid a syntactic analysis next step of natural language processing. This system for analyzing and systhesizing morpheme was to generate a word phrase by unifying syntactic and semantic features of analyzed morphemes in lexicon, and then established by C language of the personal computer.

  • PDF

Modeling Cross-morpheme Pronunciation Variations for Korean Large Vocabulary Continuous Speech Recognition (한국어 연속음성인식 시스템 구현을 위한 형태소 단위의 발음 변화 모델링)

  • Chung Minhwa;Lee Kyong-Nim
    • MALSORI
    • /
    • no.49
    • /
    • pp.107-121
    • /
    • 2004
  • In this paper, we describe a cross-morpheme pronunciation variation model which is especially useful for constructing morpheme-based pronunciation lexicon to improve the performance of a Korean LVCSR. There are a lot of pronunciation variations occurring at morpheme boundaries in continuous speech. Since phonemic context together with morphological category and morpheme boundary information affect Korean pronunciation variations, we have distinguished phonological rules that can be applied to phonemes in within-morpheme and cross-morpheme. The results of 33K-morpheme Korean CSR experiments show that an absolute reduction of 1.45% in WER from the baseline performance of 18.42% WER was achieved by modeling proposed pronunciation variations with a possible multiple context-dependent pronunciation lexicon.

  • PDF

Isolated Word Recognition Algorithm Using Lexicon and Multi-layer Perceptron (단어사전과 다층 퍼셉트론을 이용한 고립단어 인식 알고리듬)

  • 이기희;임인칠
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.8
    • /
    • pp.1110-1118
    • /
    • 1995
  • Over the past few years, a wide variety of techniques have been developed which make a reliable recognition of speech signal. Multi-layer perceptron(MLP) which has excellent pattern recognition properties is one of the most versatile networks in the area of speech recognition. This paper describes an automatic speech recognition system which use both MLP and lexicon. In this system., the recognition is performed by a network search algorithm which matches words in lexicon to MLP output scores. We also suggest a recognition algorithm which incorperat durational information of each phone, whose performance is comparable to that of conventional continuous HMM(CHMM). Performance of the system is evaluated on the database of 26 vocabulary size from 9 speakers. The experimental results show that the proposed algorithm achieves error rate of 7.3% which is 5.3% lower rate than 12.6% of CHMM.

  • PDF

Ontology-lexicon-based question answering over linked data

  • Jabalameli, Mehdi;Nematbakhsh, Mohammadali;Zaeri, Ahmad
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.239-246
    • /
    • 2020
  • Recently, Linked Open Data has become a large set of knowledge bases. Therefore, the need to query Linked Data using question answering (QA) techniques has attracted the attention of many researchers. A QA system translates natural language questions into structured queries, such as SPARQL queries, to be executed over Linked Data. The two main challenges in such systems are lexical and semantic gaps. A lexical gap refers to the difference between the vocabularies used in an input question and those used in the knowledge base. A semantic gap refers to the difference between expressed information needs and the representation of the knowledge base. In this paper, we present a novel method using an ontology lexicon and dependency parse trees to overcome lexical and semantic gaps. The proposed technique is evaluated on the QALD-5 benchmark and exhibits promising results.

An Automatic Korean Lexical Acquisition System (한국어 어휘자동획득 시스템)

  • Lim, Heui-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1087-1091
    • /
    • 2007
  • This paper proposes a automatic korean lexical acquisition system which reflects the characteristics of human language acquisition. The proposed system automatically builds two kinds of lexicon, full-form lexicon and decomposition using Korean corpus as its input. As the experimental results using Korean Sejeong corpus of which size is 10 million Eojeols, the system acquired 2,097 full-form Eojeols and 3,488 morphemes. The accumulated frequency of the acquired full-form Eojeols covers the 38.63% of the input corpus and accuracy of morpheme acquisition is 99.87%.

  • PDF

The Change of toxical Structure by Causativization in Korean: a generative lexicon approach (한국어 사동화와 어휘의미구조의 변화: 생성어휘부(Generative Lexicon) 이론에 의한 접근)

  • 김윤신
    • Language and Information
    • /
    • v.6 no.2
    • /
    • pp.57-82
    • /
    • 2002
  • This study explores the lexical-semantic structure of derived causative verbs in Korean based on Pustejovsky(1995)'s Generative Lexicon Theory (GL). Morphological causative verbs are derived from their root stems by affixing ‘-i, -hi, -li, -gi’ in Korean and the meanings of derived predicates are closely related to the meanings of their root verbs. In particular, the change of the ARGUMENT STRUCTURE by morphological derivation leads to the change of the EVENT STRUCTURE. The ARGUMENT STRUCTURES of derived causative verbs include a causer argument, which is added to the ARGUMENT STRUCTURE of their root verbs by means of the causative derivation. Their EVENT STRUCTURE has a headed process related to a causer and its result is the event which their root verbs denote. This approach can also suggest that the (in)directness of causative is dependent on is the semantics of its root verb.

  • PDF

Classification of Behavioral Lexicon and Definition of Upper, Lower Body Structures in Animation Character

  • Hongsik Pak;Suhyeon Choi;Taegu Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.103-117
    • /
    • 2023
  • This study focuses on the behavioural lexical classification for extracting animation character actions and the analysis of the character's upper and lower body movements. The behaviour and state of characters in the animation industry are crucial, and digital technology is enhancing the industry's value. However, research on animation motion application technology and behavioural lexical classification is still lacking. Therefore, this study aims to classify the predicates enabling animation motion, differentiate the upper and lower body movements of characters, and apply the behavioural lexicon's motion data. The necessity of this research lies in the potential contributions of advanced character motion technology to various industrial fields, and the use of the behavioural lexicon to elucidate and repurpose character motion. The research method applies a grammatical, behavioural, and semantic predicate classification and behavioural motion analysis based on the character's upper and lower body movements.

Building a Korean Sentiment Lexicon Using Collective Intelligence (집단지성을 이용한 한글 감성어 사전 구축)

  • An, Jungkook;Kim, Hee-Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.49-67
    • /
    • 2015
  • Recently, emerging the notion of big data and social media has led us to enter data's big bang. Social networking services are widely used by people around the world, and they have become a part of major communication tools for all ages. Over the last decade, as online social networking sites become increasingly popular, companies tend to focus on advanced social media analysis for their marketing strategies. In addition to social media analysis, companies are mainly concerned about propagating of negative opinions on social networking sites such as Facebook and Twitter, as well as e-commerce sites. The effect of online word of mouth (WOM) such as product rating, product review, and product recommendations is very influential, and negative opinions have significant impact on product sales. This trend has increased researchers' attention to a natural language processing, such as a sentiment analysis. A sentiment analysis, also refers to as an opinion mining, is a process of identifying the polarity of subjective information and has been applied to various research and practical fields. However, there are obstacles lies when Korean language (Hangul) is used in a natural language processing because it is an agglutinative language with rich morphology pose problems. Therefore, there is a lack of Korean natural language processing resources such as a sentiment lexicon, and this has resulted in significant limitations for researchers and practitioners who are considering sentiment analysis. Our study builds a Korean sentiment lexicon with collective intelligence, and provides API (Application Programming Interface) service to open and share a sentiment lexicon data with the public (www.openhangul.com). For the pre-processing, we have created a Korean lexicon database with over 517,178 words and classified them into sentiment and non-sentiment words. In order to classify them, we first identified stop words which often quite likely to play a negative role in sentiment analysis and excluded them from our sentiment scoring. In general, sentiment words are nouns, adjectives, verbs, adverbs as they have sentimental expressions such as positive, neutral, and negative. On the other hands, non-sentiment words are interjection, determiner, numeral, postposition, etc. as they generally have no sentimental expressions. To build a reliable sentiment lexicon, we have adopted a concept of collective intelligence as a model for crowdsourcing. In addition, a concept of folksonomy has been implemented in the process of taxonomy to help collective intelligence. In order to make up for an inherent weakness of folksonomy, we have adopted a majority rule by building a voting system. Participants, as voters were offered three voting options to choose from positivity, negativity, and neutrality, and the voting have been conducted on one of the largest social networking sites for college students in Korea. More than 35,000 votes have been made by college students in Korea, and we keep this voting system open by maintaining the project as a perpetual study. Besides, any change in the sentiment score of words can be an important observation because it enables us to keep track of temporal changes in Korean language as a natural language. Lastly, our study offers a RESTful, JSON based API service through a web platform to make easier support for users such as researchers, companies, and developers. Finally, our study makes important contributions to both research and practice. In terms of research, our Korean sentiment lexicon plays an important role as a resource for Korean natural language processing. In terms of practice, practitioners such as managers and marketers can implement sentiment analysis effectively by using Korean sentiment lexicon we built. Moreover, our study sheds new light on the value of folksonomy by combining collective intelligence, and we also expect to give a new direction and a new start to the development of Korean natural language processing.