• 제목/요약/키워드: Lexical Heterogeneity

검색결과 2건 처리시간 0.019초

의미적 유사성과 그래프 컨볼루션 네트워크 기법을 활용한 엔티티 매칭 방법 (Entity Matching Method Using Semantic Similarity and Graph Convolutional Network Techniques)

  • 단홍조우;이용주
    • 한국전자통신학회논문지
    • /
    • 제17권5호
    • /
    • pp.801-808
    • /
    • 2022
  • 대규모 링크드 데이터에 어떻게 지식을 임베딩하고, 엔티티 매칭을 위해 어떻게 신경망 모델을 적용할 것인가에 대한 연구는 상대적으로 많이 부족한 상황이다. 이에 대한 가장 근본적인 문제는 서로 다른 레이블이 어휘 이질성을 초래한다는 것이다. 본 논문에서는 이러한 어휘 이질성 문제를 해결하기 위해 재정렬 구조를 결합한 확장된 GCN(Graph Convolutional Network) 모델을 제안한다. 제안된 모델은 기존 임베디드 기반 MTransE 및 BootEA 모델과 비교하여 각각 53% 및 40% 성능이 향상되었으며, GCN 기반 RDGCN 모델과 비교하여 성능이 5.1% 향상되었다.

인간언어공학에의 활용을 위한 이종 개념체계 간 사상 - 세종의미부류와 KorLexNoun 1.5 - (Mapping Heterogenous Ontologies for the HLP Applications - Sejong Semantic Classes and KorLexNoun 1.5 -)

  • 배선미;임경업;윤애선
    • 인지과학
    • /
    • 제21권1호
    • /
    • pp.95-126
    • /
    • 2010
  • 본 연구에서는 인간언어공학에서의 활용을 위해 매우 이질적인 세종전자사전의 의미부류(SJSC)와 KorLexNoun 1.5(KLN)의 상위노드 간의 사상을 목표로, '의미 입자(sense grain)가 작은 개념체계(fine-grained ontology)' 간 귀납적이며 상향적인 수동 사상 방법론을 제안하였다. 동시에 이종 자원 간의 사상에 있어 각 의미체계의 이질성 때문에 발생하는 여러 가지 문제점을 살펴보고, 그 해결방안도 제안하였다. 두 이종 개념체계 간의 사상 방법은 SJSC의 단말 노드와 KLN의 Least Upper Bound(LUB)를 기본단위로 하여, 첫째, 어휘 분포를 이용하여 사상 후보군을 결정하고, 둘째, 계층 관계와 정의문과 용례를 이용하여 후보군들 간의 정확한 의미구분을 하며, 셋째, 상 하위-자매노드에 SJSC의 적정술어 및 정의문을 적용하여 LUB의 단계를 결정하고, 넷째, 양 의미체계의 계층관계를 비교함으로써 SJSC의 단말 노드와의 사상 여부를 판단하며, 마지막으로 KLN의 오류 및 전문용어 후보군은 사상에서 제외하였다. 이와같이 본 연구에서는 단계별 사상 준거의 설정에 있어 각 의미체계에 기술되어 있는 다양한 언어정보를 적극 이용하였는데, 이는 세밀한 수동 사상의 장점이라 할 수 있다. 본 연구에서 제안한 방법으로 사상한 결과, SJSC의 474개의 단말 및 비단말 노드와 KLN의 신셋(synset) 간에는 중복을 제외하고 6,487개의 LUB가 사상되었으며, 각 LUB의 하위노드를 포함해서는 모두 88,255개의 KLN 신셋이 사상되어 전체적으로는 97.91%가 사상되었다. 본 연구의 결과는 정교한 한국어 통사 및 의미 분석에 활용될 수 있을 것이다.

  • PDF