• Title/Summary/Keyword: Lewis acid catalyst

Search Result 41, Processing Time 0.032 seconds

Alkylation of Benzene over Zeolites with 1-Dodecene (제올라이트 촉매상에서 1-Dodecene을 이용한 벤젠의 알킬화 반응)

  • Shin, Heung-Seon;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.117-125
    • /
    • 1999
  • The alkylation benzene with 1-dodecene of Mordenite, Zeolite ${\beta}$ and Zeolite Y was studied in the stirring batch reactor. The kinds of zeolites were found to have influenced the reaction conversion and distribution of phenyldodecane isomer in the product. Compared to the alkylation conducted over Zeolite Y and Zeolite ${\beta}$, the alkylation over Mordenite exhibited higher distribution of 2-phenyldodecane and the alkylation conducted over Zeolite Y and Mordenite, the alkylation over Zeolite ${\beta}$ exhibited higher distribution of heavy alkylate which formed through oligomerization reaction readily deactivated the Lewis acid sites. A special feature of the effect of the benzene to 1-dodecene ratio the reaction conversion and selectivity of phenyldodecane isomer was found. At alkylation of benzene with 1-dodecene over Zeolite ${\beta}$, when the catalyst content in the system was high, the reaction will reach the optimal conversion at the higher B/D. When the benzene to 1-dodecene ratio was high, the selectivity of phenyldodecane isomer is high. It was also found that at the similar reaction conversion there was the same product distribution regardless of D/C ratio.

Synthesis of D-1,3-Dioxolane and D-1,3-Oxathiolane Pyrimidine Nucleosides (D-1,3-Dioxolane 및 D-1,3-Oxathiolane 피리미딘 뉴크레오사이드의 합성)

  • Hong, Joon-Hee;Cha, Ma-Rie;Shin, Seong-Eun;Choi, Bo-Gil;Chung, Byung-Ho;Kim, Joong-Hyup;Lee, Chong-Kyo;Chung, Won-Keun;Chun, Moon-Woo
    • YAKHAK HOEJI
    • /
    • v.38 no.6
    • /
    • pp.703-711
    • /
    • 1994
  • We synthesized D-1,3-dioxolanyl acetate from D-mannose using Frazer-Reide reaction and D-1,3-oxathiolanyl acetate from either D-mannose or D-galactose in good yields. These acetates were conjugated with various disilylated pyrimidine base using trimethylsilyl trifluoromethane sulfonate as a Lewis acid catalyst to obtain 32 different D-nucleosides.

  • PDF

Comparative Study of Nickel and Copper Catalysts Using Al2O3 and Hydrotalcite in Methanol Steam Reforming (메탄올 수증기 개질반응에서 알루미나 및 하이드로탈사이트를 이용한 니켈 및 구리 촉매 비교 연구)

  • Lee, Jae-hyeok;Jang, Seung Soo;Ahn, Ho-Geun
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.14-20
    • /
    • 2022
  • In this study, the catalytic reaction characteristics for producing hydrogen using methanol steam reforming were investigated. Nickel and copper are frequently used in steam reforming reaction and methanol synthesis, were used as main active metals. As a support, hydrotalcite has a high specific surface area, excellent porosity and thermal stability, and has weak Lewis acid sites and basic properties. Hydrotalcite was used to identify catalysts of methanol steam reforming with catalytic activity and their properties. In this research, high reactivity was shown in the catalyst of copper metal with high reducibility. And increasing of active metal loading showed the higher the methanol conversion and hydrogen selectivity.

Alkali-Metal Ion Catalysis and Inhibition in SNAr Reaction of 1-Halo-2,4-dinitrobenzenes with Alkali-Metal Ethoxides in Anhydrous Ethanol

  • Kim, Min-Young;Ha, Gyu Ho;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2438-2442
    • /
    • 2014
  • A kinetic study is reported for $S_NAr$ reaction of 1-fluoro-2,4-dinitrobenzene (5a) and 1-chloro-2,4-dinitrobenzene (5b) with alkali-metal ethoxides (EtOM, M = Li, Na, K and 18-crown-6-ether complexed K) in anhydrous ethanol. The second-order rate constant increases in the order $k_{EtOLi}$ < $k_{EtO^-}$ < $k_{EtONa}$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for the reaction of 5a and $k_{EtOLi}$ < $k_{EtONa}$ < $k_{EtO^-$ < $k_{EtOK}$ < $k_{EtOK/18C6}$ for that of 5b. This indicates that $M^+$ ion behaves as a catalyst or an inhibitor depending on the size of $M^+$ ion and the nature of the leaving group ($F^-$ vs. $Cl^-$). Substrate 5a is more reactive than 5b, although the $F^-$ in 5a is ca. $10pK_a$ units more basic than the $Cl^-$ in 5b, indicating that the reaction proceeds through a Meisenheimer complex in which expulsion of the leaving group occurs after the rate-determining step (RDS). $M^+$ ion would catalyze the reaction by increasing either the nucleofugality of the leaving group through a four-membered cyclic transition state or the electrophilicity of the reaction center through a ${\pi}$-complex. However, the enhanced nucleofugality would be ineffective for the current reaction, since expulsion of the leaving group occurs after the RDS. Thus, it has been concluded that $M^+$ ion catalyzes the reaction by increasing the electrophilicity of the reaction center through a ${\pi}$-complex between $M^+$ ion and the ${\pi}$-electrons in the benzene ring.

Effects of Manganese Precursors on MnOx/TiO2 for Low-Temperature SCR of NOx (NOx제거용 MnOx-TiO2 계 저온형SCR 촉매의 Mn전구체에 따른 영향)

  • Kim, Janghoon;Shin, Byeong kil;Yoon, Sang hyeon;Lee, Hee soo;Lim, Hyung mi;Jeong, Yongkeun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.3
    • /
    • pp.201-205
    • /
    • 2012
  • The effects of various manganese precursors for the low-temperature selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyses. $MnO_x/TiO_2$ catalysts were prepared from three different precursors, manganese nitrate, manganese acetate(II), and manganese acetate(III), by the sol-gel method. The manganese acetate(III)-$MnO_x/TiO_2$ catalyst tended to suppress the phase transition from the anatase structure to the rutile or the brookite after calcination at $500^{\circ}C$ for 2 h. It also had a high specific surface area, which was caused by a smaller particle size and more uniform distribution than the others. The change of catalytic acid sites was confirmed by Raman and FT-IR spectroscopy and the manganese acetate(III)-$MnO_x/TiO_2$ had the strongest Lewis acid sites among them. The highest de-NOx efficiency and structural stability were achieved by using the manganese cetate(III) as a precursor, because of its high specific surface area, a large amount of anatase $TiO_2$, and the strong catalytic acidity.

Physico-chemical effects of cerium oxide on catalytic activity of CeO2-TiO2 prepared by sol-gel method for NH3-SCR (CeO2가 졸겔법으로 합성한 CeO2-TiO2계 SCR용 촉매의 활성에 미치는 물리화학적 영향)

  • Kim, Buyoung;Shin, Byeongkil;Lee, Heesoo;Chun, Ho Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.320-324
    • /
    • 2013
  • The effects of $CeO_2$ on catalytic activity of $CeO_2-TiO_2$ for the selective catalytic reduction (SCR) of $NO_x$ were investigated in terms of structural, morphological, and physico-chemical analyseis. $CeO_2-TiO_2$ catalysts were synthesized with three different additions, 10, 20, and 30 wt% of $CeO_2$, by the sol-gel method. The XRD peaks of all specimens were assigned to a $TiO_2$ phase (anatase) and the peaks became broader with the addition of $CeO_2$ because it was dispersed as an amorphous phase on the surface of $TiO_2$ particles. The specific surface area of $TiO_2$ increased with the addition of $CeO_2$ from $60.6306m^2/g$ to $116.2791m^2/g$ due to suppression of $TiO_2$ grain growth by $CeO_2$. The 30 wt% $CeO_2-TiO_2$ catalyst, having the strongest catalytic acid sites ($Br{\Phi}nsted$ and Lewis), showed the highest $NO_x$ conversion efficiency of 98 % at $300^{\circ}C$ among the specimens. It was considered that $CeO_2$ contributes to the improvement of the $NO_x$ conversion of $CeO_2-TiO_2$ catalyst by increasing specific surface area and catalytic acid sites.

Alkali-Metal Ion Catalysis in Alkaline Ethanolysis of 2-Pyridyl Benzoate and Benzyl 2-Pyridyl Carbonate: Effect of Modification of Nonleaving Group from Benzoyl to Benzyloxycarbonyl

  • Um, Ik-Hwan;Kang, Ji-Sun;Kim, Chae-Won;Lee, Jae-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.519-523
    • /
    • 2012
  • A kinetic study is reported on nucleophilic displacement reactions of benzyl 2-pyridyl carbonate 6 with alkalimetal ethoxides, EtOM (M = Li, Na, and K), in anhydrous ethanol at $25.0{\pm}0.1^{\circ}C$. The plots of pseudo-firstorder rate constant $k_{obsd}$ vs. [EtOM] curve upward, a typical phenomenon reported previously for alkaline ethanolysis of esters in which alkali-metal ions behave as a Lewis-acid catalyst. The kobsd value for the reaction of 6 with a fixed EtOK concentration decreases rapidly upon addition of 18-crown-6-ether (18C6), a complexing agent for $K^+$ ion up to [18C6]/[EtOK] = 1.0 and then remains constant thereafter, indicating that the catalytic effect exerted by K+ ion disappears in the presence of excess 18C6. The reactivity of EtOM towards 6 increases in the order $EtO^-$ < EtOLi < EtONa < EtOK, which is contrasting to the reactivity order reported for the corresponding reactions of 2-pyridyl benzoate 4, i.e., $EtO^-$ < EtOK < EtONa < EtOLi. Besides, 6 is 1.7 and 3.5 times more reactive than 4 towards dissociated $EtO^-$ and ion-paired EtOK, respectively. The reactivity difference and the contrasting metal-ion selectivity are discussed in terms of electronic effects and transition-state structures.

Synergistic Effect of Copper and Cobalt in Cu-Co-O Composite Nanocatalyst for Catalytic Ozonation

  • Dong, Yuming;Wu, Lina;Wang, Guangli;Zhao, Hui;Jiang, Pingping;Feng, Cuiyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3227-3232
    • /
    • 2013
  • A novel Cu-Co-O composite nanocatalyst was designed and prepared for the ozonation of phenol. A synergistic effect of copper and cobalt was observed over the Cu-Co-O composite nanocatalyst, which showed higher activity than either copper or cobalt oxide alone. In addition, the Cu-Co-O composite revealed good activity in a wide initial pH range (4.11-8.05) of water. The fine dispersion of cobalt on the surface of copper oxide boosted the interaction between catalyst and ozone, and the surface Lewis acid sites on the Cu-Co-O composite were determined as the active sites. The Raman spectroscopy also proved that the Cu-Co-O composite was quite sensitive to the ozone. The trivalent cobalt in the Cu-Co-O composite was proposed as the valid state.

A Study on the Control of Microstructures of Polyalphaolefins via Cationic Polymerization (양이온 중합을 이용한 폴리알파올레핀의 미세구조 조절에 관한 연구)

  • Ko, Young Soo;Kwon, Wan-Seop;No, Myoung-Han;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.346-352
    • /
    • 2015
  • Polyalphaolefin (PAO) is a synthetic lubricant that is superior to mineral-based lubricants in the terms of physical and chemical characteristics such as low pour point, high viscosity index (VI), and thermal and oxidation stability. Several kinds of PAOs have been synthesized by using 1-pentene, 1-hexene, 1-octene, or 1-dodecene as monomer with three kinds of aluminum-based Lewis acid catalysts via cationic polymerization. The control of the catalytic performance and physical properties of PAO such like molecular weight, kinematic viscosity, pour point, and viscosity index was done by changing polymerization parameters. The alkyl aluminum halide-based catalysts show better catalytic activity than that of the conventional $AlCl_3$ catalyst. The microstructure of PAO was investigated by means of TOF-MS (time of flightmass spectroscopy) analysis in order to elucidate the correlation between the performances of the lubricant (VI, pour point) and the molecular structure of PAO. The VI of PAO increases with increases in the carbon number of ${\alpha}$-olefin. In other words, the performances of PAO as a lubricant strongly depended on the branch length of PAO.

Metal Ion Catalysis in Nucleophilic Displacement Reactions of 2-Pyridyl X-Substituted Benzoates with Potassium Ethoxide in Anhydrous Ethanol

  • Lee, Jae-In;Kang, Ji-Sun;Im, Li-Ra;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3543-3548
    • /
    • 2010
  • A kinetic study on nucleophilic displacement reactions of 2-pyridyl X-substituted benzoates 1a-e with potassium ethoxide (EtOK) in anhydrous ethanol is reported. Plots of pseudo-first-order rate constants ($k_{obsd}$) vs. $[EtOK]_o$ exhibit upward curvature. The $k_{obsd}$ value at a fixed $[EtOK]_o$ decreases steeply upon addition of 18-crown-6-ether (18C6) to the reaction mixture up to [18C6]/$[EtOK]_o$ = 1 and then remains nearly constant thereafter. In contrast, $k_{obsd}$ increases sharply upon addition of LiSCN or KSCN. Dissection of $k_{obsd}$ into $k_{EtO^-}$ and $k_{EtOM}$ has revealed that ion-paired EtOK is more reactive than dissociated $EtO^-$, indicating that $K^+$ ion acts as a Lewis acid catalyst. Hammett plots for the reactions of 1a-e with dissociated $EtO^-$ and ion-paired EtOK result in excellent linear correlation with $\rho$ values of 3.01 and 2.67, respectively. The $k_{EtOK}/k_{EtO^-}$ ratio increases as the substituent X in the benzoyl moiety becomes a stronger electron-donating group. $K^+$ ion has been concluded to catalyze the current reaction by stabilizing the transition state through formation of a 6-membered cyclic complex.