• Title/Summary/Keyword: Lewis acid catalyst

Search Result 41, Processing Time 0.029 seconds

Heterogeneous SnCl2/SiO2 versus Homogeneous SnCl2 Acid Catalysis in the Benzo[N,N]-heterocyclic Condensation

  • Darabi, Hossein Reza;Aghapoor, Kioumars;Mohsenzadeh, Farshid;Jalali, Mohammad Reza;Talebian, Shiva;Ebadi-Nia, Leila;Khatamifar, Ehsan;Aghaee, Ali
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.213-218
    • /
    • 2011
  • The scope of homogeneous Lewis acid-catalyzed benzo[N,N]-heterocyclic condensation was expanded to include the use of various metal salts not reported in the literature and $SnCl_2{\cdot}2H_2O$ was finally selected. Among various solid supports activated with $SnCl_2$, heterogeneous $SnCl_2/SiO_2$ proved to be the most effective and significantly higher conversions were achieved compared to $SnCl_2{\cdot}2H_2O$ itself. The results of TG-DTA and BET indicated that dispersed $SnCl_2$ coordinates with surface hydroxyl groups of silica leading to formation of stable Lewis acid sites. Low catalyst loading, operational simplicity, practicability and applicability to various substrates render this eco-friendly approach as an interesting alternative to previously applied procedures.

Dehydration of Methanol to Dimethyl ether, Ethylene and Propylene over Silica-Doped Sulfated Zirconia

  • Hussain, Syed T.;Mazhar, M.;Gul, Sheraz;Chuang, Karl T;Sanger, Alan R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1844-1850
    • /
    • 2006
  • Two types of catalyst samples were prepared, one sulfated zirconia and the other silica doped sulfated zirconia. The acidity tests indicate that sulfated zirconia doped with silica has higher concentration and strength of acidic catalyst sites than undoped sulfated zirconia. The acidic surface sites have been characterized using FTIR, NMR, pyridine adsorption, TPD, XRD and nitrogen adsorption. Doping with silica increased the concentration of surface Lewis and Brfnsted acid sites and resulted in generation of proximate acid sites.The activity test indicates that doping sulfated zirconia with silica increases both the acidity and catalytic activity for liquid phase dehydration of methanol at 413-453 K. Methanol is sequentially dehydrated to dimethyl ether and ethylene over both catalysts. Significant amounts of propylene are also formed over the silica-doped catalyst, but not over the undoped catalyst.

Synthesis of Biodiesel from Soybean Oil Using Lewis Acidic Ionic Liquids Containing Metal Chloride Salts (금속염화물을 첨가한 루이스산 이온성 액체 촉매를 이용한 대두유로부터 바이오디젤 합성)

  • Choi, Jae Hyung;Park, Yong Beom;Lee, Suk Hee;Cheon, Jae Kee;Choi, Jae Wook;Woo, Hee Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.5
    • /
    • pp.643-648
    • /
    • 2010
  • Production of biodiesel from soybean oil catalyzed by Lewis acidic ionic liquids(ILs) containing metal chloride salts was investigated in this study. Metal chloride salts, such as $SnCl_2$, $ZnCl_2$, $AlCl_3$, $FeCl_3$ and CuCl, were screened for oil transesterification in the range of 363-423 K. Among these metal chlorides, tin chloride showed particularly high catalytic property for the oil transesterification. Similarly, among these Lewis acidic ionic liquid catalysts, $[Me_3NC_2H_4OH]Cl-2SnCl_2$ resulted in a high fatty acid methyl esters(FAMEs) content of 91.1% under the following reaction conditions: 403 K, 14 h, and a molar ratio of 1:12:0.9 (oil:methanol:catalyst). Unlike the pure tin chloride catalysts, Lewis acidic ILs containing tin chloride $[Me_3NC_2H_4OH]Cl-2SnCl_2$ catalyst could be recycled up to five times without any significant loss of activity by separating from the FAMEs with simple decantation. The Lewis acidity and high moisture-stability of this catalyst appeared to be responsible for the excellent catalytic performance. The effects of reaction time and the molar ratio of methanol/catalyst to oil on the FAMEs production were also studied in this work.

Isospecific Propylene Polymerization Behavior of Lewis Base Functionalized Unbridged Zirconocences under Bulk Conditions

  • Yoon, Seung Woong;Kim, Hwa Kyu;Kim, Seong Kyun;Kim, Taewon;Lee, Min Hyung;Do, Youngkyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.236-242
    • /
    • 2014
  • Isospecific propylene polymerization behavior of meta- and para-Lewis base (E) functionalized unbridged zirconocenes ($[1-(E_n-Ph)-3,4-Me_2C_5H_2]_2ZrCl_2$, E = $NMe_2$, OMe; n = 1 or 2) was investigated under bulk conditions. Catalytic activity of the zirconocenes, and molecular weight and isotacticity of polypropylenes are found to be dependent on the position and number of the Lewis base functional groups in the zirconocenes. All the crude polypropylenes possess a broad molecular weight distribution and multi-melting transitions, indicating an involvement of multi-catalytic active species in the polymerization. The highest [mmmm] value of an isotactic portion of the polypropylenes reached 89%, which is higher than that (85%) from the well-known $C_2$-symmetric EBIZr (rac-$Et(Ind)_2ZrCl_2$) catalyst. These results support that the in situ generated, rigid rac-like cation-anion pair through the Lewis acid-base interactions between the functional groups of zirconocenes and methylaluminoxane anion is effective in the formation of isotactic polypropylene under bulk propylene polymerization conditions.

Strength and conversion characteristics of DeNOx catalysts with the addition of dispersion agent (분산제 첨가에 따른 탈질촉매의 강도세기 및 전환특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6575-6580
    • /
    • 2013
  • Various modified SCR catalysts were prepared and tested to improve the strength of catalysts for use under severe conditions. The SCR catalysts were modified with a binder and dispersion agent, and tested at the fixed bed reactor. FT-IR and $H_2$-TPR were used to analyze the degree of hydrogen use and ammonia adsorption by the modified catalysts. In the case of the SCR catalysts coated with 2.3g of the binder, 4.7g of ethanol, and 0.1g of dispersion agent, the strength of catalyst was increased by approximately 12%. On the other hand, despite the enhancement of strength, the activities of the SCR catalysts were decreased by 2-10%. When the mixed solution composed of binder, dispersion agent and $SiO_2$ solution was precipitated on the catalyst, the $NO_x$ conversion of the catalyst was decreased slightly. The Bronsted acid site and Lewis acid site worked as the activators for the SCR reaction, and were decreased by $SiO_2$.

Selective Synthesis of Butene-1 Through Double-bond Migration of Butene-2 over η-Alumina Catalysts

  • Jeon, Jong-Ki;Kim, Do Heui;Park, Young-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.9
    • /
    • pp.2669-2672
    • /
    • 2014
  • Double bond migration of butene-2 to butene-1 over ${\eta}$-alumina was investigated. The effects of calcination temperature on catalytic properties were analyzed by applying BET surface area, XRD, $NH_3$-TPD, and FT-IR of adsorbed pyridine techniques. The highest activity of the ${\eta}$-alumina catalyst calcined at $600^{\circ}C$ could be attributed not only to the highest amount of weak and medium strength acid sites, but also to the highest ratio of medium to weak strength Lewis acid sites.

A Study on the Dehydrogenation of Methanol by Alkali-doped Silica-alumina Catalyst (알칼리 금속이 첨가된 silica-alumina 촉매에 의한 메탄올의 탈수소반응의 연구)

  • Kwak, Jong Woon;Park, Jin-Nam;Lee, Ho-In
    • Applied Chemistry for Engineering
    • /
    • v.7 no.4
    • /
    • pp.698-706
    • /
    • 1996
  • Dehydrogenation of methanol to produce formaldehyde was carried out over various silica-alumina catalysts doped with alkali metals in a continuous flow system. The reaction was rather dependent on Lewis acid than Br${\ddot{o}}$nsted acid suggesting that dehydrogenation of methanol was an electronic reaction. The Br${\ddot{o}}$nsted acid sites on silica-alumina were neutralized by doping with alkali metals, and the neutralization effect of Br${\ddot{o}}$nsted acid was dependent on the electron-donating capacity of the dopant metals. Activation energy for dehydrogenation of methanol decreased when Br${\ddot{o}}$nsted acid was neutralized by doping with K.

  • PDF

The Hydrodesulfurization over NiPtMo Catalysts and Acidic Characterization of Supports (NiPtMo계 촉매 담체의 산특성 및 수소첨가 탈황반응)

  • 김문찬;이원묵;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.281-288
    • /
    • 1994
  • The hydrodesulfurization (DBT) were Peformed over NiPtMo catalysts supported on HZSM-5, LaY and ${\gamma}$- $Al_2$O$_3$under high H$_2$ pressure. And the acidities of these catalysts were characterized by using TGA and DSC. The result showed that the order of the acid strength for prepared supports was HZSM -5>LaY>${\gamma}$- A1$_2$O$_3$. For the acid amount we obtained the same result for the acid strength The acid strength and the acid amount mainly depended on the kinds of supports whose acid site were strong or not The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The origin of acid site was Bronsted in NH50 and NY catalysts And it was Lewis in NA catalyst The order of desorption activation energy for Pyridine was NH50>NY>NA. And the result was the same for thiophene. The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The conversion of DBT over NA catalyst was higher than NH and NY catalysts.

  • PDF

Synthesis of Highly Enantiomerically Enriched Arenesulfonic Acid 2-Hydroxy Esters via Kinetic Resolution of Terminal Epoxides (속도론적 분할법을 통한 말단 에폭사이드로부터 고광학순도의 아렌술폰산 2-하이드록시 에스터의 합성)

  • Lee, Yae Won;Yang, Hee Chun;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.27 no.5
    • /
    • pp.490-494
    • /
    • 2016
  • This paper describes the very efficient and highly enantioselective ring opening of terminal epoxides with alkyl and arene sulfonic acid. The dinuclear chiral (salen) Co complexes bearing Lewis acids of Al, Ga and In catalyze the reaction enantioselectively in the presence of tetrabutylammonium chloride using tert-butyl methyl ether as a solvent. The variation of the anion of the tetra butyl ammonium salt has significant impact on the reactivity and selectivity of the asymmetric ring opening of phenyl glycidyl ether with p-toluenesulfonic acid. The order of reactivity and selectivity was found to be $Cl^-$ > $l^-$ > $Br^-$ > $OH^-$. Strong synergistic effects of the different Lewis acid centers of Co-Al, Co-Ga and Co-In complexes were observed in the catalytic process. The dinuclear chiral salen catalyst containing $AlCl_3$ was found to be most active and highly enantioselective (91% ee).

A Study on NH3-SCR Vanadium-Based Catalysts according to Tungsten Content for Removing NOx Generated from Biogas Cogeneration (바이오가스 열병합 발전에서 발생하는 NOx 제거를 위한 텅스텐 함량에 따른 NH3-SCR 바나듐계 촉매 연구)

  • Jung, Min Gie;Hong, Sung Chang
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.315-324
    • /
    • 2021
  • In this study, a vanadium catalyst study was conducted on the various characteristics of the exhaust gas in the Selective-Catalytic-Reduction (SCR) method in which nitrogen oxides emitted from cogeneration using biogas are removed by using ammonia as a reducing agent and a catalyst. V/W/TiO2, a commercial catalyst, was used as the catalyst in this study, and the effect was confirmed according to the tungsten content under various operating conditions. As a result of the NH3-SCR experiment, the denitrification performance was confirmed at 380 ~ 450 ℃ more than 95%, and durability to trace amounts of SO2 was confirmed through the SO2 durability experiment and TGA analysis. As a result of H2-TPR analysis, the higher the tungsten content, the better the redox properties. Accordingly, enhanced oxidizing properties were confirmed in the oxidation test for a trace amount of carbon monoxide emitted from the cogeneration. In NH3-DRIFTs analysis, it was confirmed that the higher the tungsten content, the higher both the Bronsted/Lewis acid sites and the better the thermal durability when tungsten is added to the catalyst. Based on the experiments under various operating conditions, it is considered that a catalyst with a high tungsten content is suitable to be applied to cogeneration using biogas.