• Title/Summary/Keyword: Lever mechanism

Search Result 42, Processing Time 0.023 seconds

A multimedia synchronization mechanism using receiver buffer-level (수신측 버퍼 레벨을 이용한 멀티미디어 동기화 기법)

  • 김승천;박기현;이현태;박재성;이재용;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1334-1342
    • /
    • 1997
  • The future data communications are expected to support the various andcomplex services withmultimedia. So thispaper has focused on the multimedia synchronization problem which has important position in multimedia presentation. Firstly, this paper consider the suitable layer for multimedia synchronization in the communication structure as transport layer or upper ones, in which we propose synchronization mechanism using fixed length buffer with bufer-lever or upper ones, in which we propose synchronization mechanism using fixed length bufer with buffer-level. The proposed mechansim also supports intra-and inter-media synchronization among media. Through simulation, we prove our analysis of the fixed-length buffersize that theproposed mechanism can provide. Also we show comparisons between our mechanism and other scheme.

  • PDF

Dynamics of lockstitch sewing process

  • Midha, Vinay Kumar;Mukhopadhyay, A.;Chattopadhyay, R.;Kothari, V.K.
    • The Research Journal of the Costume Culture
    • /
    • v.21 no.6
    • /
    • pp.967-973
    • /
    • 2013
  • During high speed sewing, the needle thread is exposed to dynamic loading, short strike loading, inertia forces, friction, rubbing, force of check spring, bending, pressure, friction, impact, shock and thermal influence. The dynamic thread loading/tension alters throughout the stitch formation cycle and along its passage through the machine. The greatest tensile force occurs at the moment of stitch stretching, when the take up lever pulls for required thread length through the tension regulator. These stresses act on the thread repeatedly and the thread passes 50-80 times through the fabric, the needle eye and the bobbin case mechanism, before getting incorporated into the seam, which result in upto 40% loss in tensile strength of the sewing thread. This damage in the sewing thread adversely affects its processing and functional performance. In this paper, the contribution of dynamic loading, passage through needle and fabric, and bobbin thread interaction in the loss in tensile properties has been studied. It is observed that the loss in tensile properties occurs mainly due to the bobbin thread interaction. Dynamic loading due to the action of take up lever also causes substantial loss in tenacity and breaking elongation of cotton threads.

Improvement for Response Delays of Displacement Magnifier in Jetting Dispenser (젯팅 디스펜서 변위확대장치의 응답지연 개선 연구)

  • Ha, Myeong-Woo;Lee, Kwang-Hee;Hong, Seung-Min;Lee, Chul-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.5
    • /
    • pp.546-551
    • /
    • 2016
  • The objective of this study is to investigate the response delays between piezo-stack actuator and the displacement magnifier of jetting dispenser and to reduce its falling time in terms of displacement optimization. The dispenser is driven by the dual piezo-stack actuators with a hinge lever mechanism to precisely control flow rate of the working fluid (3000 cP). It is commonly found that piezo actuator-driven jetting dispensers involving viscous working fluids have displacement optimization problem for ideal performance. The response delay of the system is caused by the phenomenon that the displacement magnifier cannot exactly follow the motion of the piezo actuators. The response delay may lower the performance of the system due to the inaccurate discharge of working fluid or even damages to the system itself due to inharmonious motion of piezo actuators with lever system. To reduce its response delay, a new displacement profile obtained from displacement optimization is suggested; its performance is tested through finite element analysis; and experiments are carried out to verify the performance of the obtained displacement profile.

The development and Performance test of the Cook Top type Gas valve for the slim-line style Gas Range (슬림라인형 가스레인지용 쿡탑형 가스 밸브의 개발과 작동 성능 검증)

  • Kim, Sang-Ju;Lee, Sang-Cheol;Ju, Kwang-Myung;Lee, Han-Jong;Chang, In-Bae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.568-572
    • /
    • 2003
  • The height of valve body is limited to 30mm in the cook-top style gas valves for the domestic gas ranges. But the all the safety specifications of KS should be fulfilled and the magnetic power unit(MPU) should be installed in the valve body for the safety reason. The length of MPU body is longer than the 30mm that it should be located in the square direction of the knob shaft and therefore the implementation of the lever mechanism to transmit the press motion of the knob to the MPU valve is very difficult. In this paper, the hinged lever with inclined plate is used to transmit the press motion of the knob to the MPU valve. The analysis of the gas flow with using the commercial software of FLOW-3D shows that the gas flow capacity is fit for the domestic gas range. The performance and responsibility of the valve is tested for the mass production and the test results shows that the valve can be installed in the commercial gas range.

  • PDF

The Mechanism of Labor Motivation as a Determinant of Economic Security of Enterprises in Competitive Conditions

  • Lagodiienko, Volodymyr;Samoilenko, Viktoria;Pasko, Maryna;Ovod, Larysa;Matsulevych, Yevgeniy
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.385-393
    • /
    • 2022
  • In the study of the mechanism of labor motivation as a determinant of economic security of the enterprise in competitive conditions, it was found that motivation is determinant in creating the conditions for production and ensuring the active functioning of the enterprise. It is substantiated that the motivational mechanism is the presence of a system of levers, incentives, measures and other elements for economic and administrative incentives for employees, which are used for incentives to work, increase productivity and safety, and more. The motivational mechanism plays an important role in ensuring the economic security of the enterprise and at the same time is a lever to increase competitiveness in the market. The functions of the mechanism of labor motivation are singled out, among which: explanatory-substantiating, regulative, communicative, socialization, regulating. The stages of occurrence of the motive for the employee are classified. The interrelation of motives and incentives in the mechanism of labor motivation as determinants of economic security of the enterprise in competitive conditions is proved. It is proved that the mechanism of labor motivation as a determinant of economic security of the enterprise in competitive conditions should be aimed at: assistance in forming and achieving goals and objectives of the enterprise and achieving balance and equilibrium of economic goals and social responsibility of the enterprise; ensuring close cooperation between management and employees of the enterprise; focus on building a flexible mechanism; transition to a democratic style of governance and involvement of employees in decision-making.

Mechanism Design of the Micro Weighing Device by Using Null Balance Method (영위법을 이용한 미소중량 측정 장치의 기구설계)

  • Choi, In-Mook;Woo, Sam-Yong;Kim, Boo-Shik;Kim, Soo-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.183-193
    • /
    • 2003
  • Micro-weighing device by using null balance method is being essential part in fields of high-technology industries such as precision semiconductor industry, precision chemistry, biotechnology and genetics etc. Also, requirements for high resolution and for large measurement range increase more and more. The performance of the micro-weighing device can be determined by the mechanism design and analysis. The analytical design method has been proposed for the performance improvement such as resolution, measurement range and fast response. The 2-stage displacement amplification is designed to overcome the limit of conventional force transmitting lever. The parallel spring is designed for the measurement result independent of the input force position variation. Also, the natural frequency of mechanism is analyzed for the fast response. After each analysis, optimal design has been carried out. To verify the analysis and design result, characteristics experiments had been carried out after construction. Finally, the system had been controlled.

Prediction of Creep Deformation and Short Time Rupture Life of AZ31 Magnesium Alloy below 0.5Tm (0.5Tm 이하에서의 AZ31 마그네슘합금의 크리이프 변형과 단시간 파단수명예측)

  • Kang, D.M.;An, J.O.;Jeon, S.H.;Koo, Y.;Sim, S.B.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.558-563
    • /
    • 2008
  • The initial strain, the applied stress exponent, the activation energy, and rupture time in AZ31 magnesium alloy have been measured in order to predict the deformation mechanism and rupture life of creep over the temperature range of 423-443K. Creep tests were carried out under constant applied stress and temperature, and the lever type tester and automatic temperature controller was used for it, respectively. The experimental results showed that the applied stress exponent was about 9.74, and the activation energy for creep, 113.6KJ/mol was less than that of the self diffusion of Mg alloy including aluminum. From the results, the mechanism for creep deformation seems to be controlled by cross slip at the temperature range of 423-443K. Also the higher the applied stress and temperature, the higher the initial strain. And the rupture time for creep decreased as quadratic function with increasing the initial strain in double logarithmic axis.

Kinematic Analysis of a 6-DOF Ultra-Precision Positioning Stage Based on Flexure Hinge (플렉셔 힌지 기반 6-자유도 초정밀 위치 결정 스테이지의 기구학 해석)

  • Shin, Hyun-Pyo;Moon, Jun-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.7
    • /
    • pp.579-586
    • /
    • 2016
  • This paper describes kinematic analysis of a 6-degrees-of-freedom (DOF) ultra-precision positioning stage based on a flexure hinge. The stage is designed for processes which require ultra-precision and high load capacities, e.g. wafer-level precision bonding/assembly. During the initial design process, inverse and forward kinematic analyses were performed to actuate the precision positioning stage and to calculate workspace. A two-step procedure was used for inverse kinematic analysis. The first step involved calculating the amount of actuation of the horizontal actuation units. The second step involved calculating the amount of actuation of the vertical actuation unit, given the the results of the first step, by including a lever hinge mechanism adopted for motion amplification. Forward kinematic analysis was performed by defining six distance relationships between hinge positions for in-plane and out-of-plane motion. Finally, the result of a circular path actuation test with respect to the x-y, y-z, and x-z planes is presented.

Design and Testing of a Long Stroke Fast Tool Servo for Ultra-precision Free-form Machining (초정밀 자유곡면 가공용 long stroke fast tool servo의 설계 및 특성 평가)

  • Kim, Ho-Sang;Lee, Kwang-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.2
    • /
    • pp.35-44
    • /
    • 2009
  • Long stroke Fast Tool Servo (LFTS) with maximum stroke of $432{\mu}m$ is designed, manufactured and tested for fabrication of optical free-form surfaces. The large amount of stroke in LFTS has been realized by utilizing the hinge and lever mechanisms which enable the displacement amplification ratio of 4.3. In this mechanism the peculiar shape was devised for maximizing the displacement of end tip in LFTS and special mechanical spring has been mounted to provide the sufficient preload to the piezoelectric actuator. Also, its longitudinal motion of tool tip can be measured by capacitive type displacement sensor and closed-loop controlled to overcome the nonlinear hysteresis. In order to verify the static and dynamic characteristics of designed LFTS, several features including step response, frequency response and cut-off frequency in closed-loop mode were experimentally examined. Also, basic machining result shows that the proposed LFTS is capable of generating the optical free-form surface as an additional axis in diamond turning machine.