• 제목/요약/키워드: Levenberg-Marquadt Algorithm

검색결과 4건 처리시간 0.026초

색상 조합 모델과 LM(Levenberg-Marquadt)알고리즘을 이용한 얼굴 영역 검출 (Face Region Detection using a Color Union Model and The Levenberg-Marquadt Algorithm)

  • 김진옥
    • 정보처리학회논문지B
    • /
    • 제14B권4호
    • /
    • pp.255-262
    • /
    • 2007
  • 본 연구는 칼라 이미지에서 인물의 얼굴 영역을 검출하는 개선된 색상 기반 방식을 제안한다. 제안 방법은 RGB, $YC_bC_r$, YIQ의 세 가지 색상 모델을 조합, 각각 휘도와 색도 성분 조합 히스토그램을 구축하고 구축된 색상 조합 히스토그램을 역전파방식의 신경망에 입력한 후 학습단계의 반본 과정에 Levenberg-Marquadt 알고리즘을 적용한다. 제안 방법은 신경망 학습과정에 Levenberg-Marquadt 알고리즘을 적용하여 얼굴 검출에 가장 많이 사용되는 방법 중 하나인 역전파 신경망이 지역 최소값에 봉착하는 문제점을 해결함으로써 검출 오류율을 낮추는데 기여한다. 또한 색상 조합 히스토그램을 사용한 새로운 색상 조합 기반의 얼굴 영역 검출 방법은 빛의 영향에 강건하도록 휘도 성분을 분리하고 색도 성분을 강조하여 단일 색상 히스토그램보다 신경망에 더 신뢰성 있는 값을 입력함으로써 단일 색상 공간을 사용했을 때보다 높은 얼굴 검출율을 보인다. 실험 결과는 제안 방식이 얼굴 영역 검출 개선에 효과적이며 빛의 변화에 강건함을 보여준다.

Identification of Finite Automata Using Recurrent Neural Networks

  • Won, Sung-Hwan;Park, Cheol-Hoon
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2008년도 하계종합학술대회
    • /
    • pp.667-668
    • /
    • 2008
  • This paper demonstrates that the recurrent neural networks can be used successfully for the identification of finite automata (FAs). A new type of recurrent neural network (RNN) is proposed and the offline training algorithm, regulated Levenberg-Marquadt (LM) algorithm, for the network is developed. Simulation result shows that the identification and the extraction of FAs are practically achievable.

  • PDF

Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network and its Application to the Spirals and Sonar Pattern Classification Problems

  • Iyoda, Eduardo-Masato;Hajime Nobuhara;Kazuhiko Kawamoto;Shin′ichi Yoshida;Kaoru Hirota
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.158-161
    • /
    • 2003
  • A cascade structured neural network called Sigma-Pi$_{t}$ Cascaded Hybrid Neural Network ($\sigma$$\pi$$_{t}$-CHNN) is Proposed. It is an extended version of the Sigma-Pi Cascaded extended Hybrid Neural Network ($\sigma$$\pi$-CHNN), where the classical multiplicative neuron ($\pi$-neuron) is replaced by the translated multiplicative ($\pi$$_{t}$-neuron) model. The learning algorithm of $\sigma$$\pi$$_{t}$-CHNN is composed of an evolutionary programming method, responsible for determining the network architecture, and of a Levenberg-Marquadt algorithm, responsible for tuning the weights of the network. The $\sigma$$\pi$$_{t}$-CHNN is evaluated in 2 pattern classification problems: the 2 spirals and the sonar problems. In the 2 spirals problem, $\sigma$$\pi$$_{t}$-CHNN can generate neural networks with 10% less hidden neurons than that in previous neural models. In the sonar problem, $\sigma$$\pi$$_{t}$-CHNN can find the optimal solution for the problem i.e., a network with no hidden neurons. These results confirm the expanded information processing capabilities of $\sigma$$\pi$$_{t}$-CHNN, when compared to previous neural network models. network models.

  • PDF

Spatial Estimation of soil roughness and moisture from Sentinel-1 backscatter over Yanco sites: Artificial Neural Network, and Fractal

  • Lee, Ju Hyoung
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.125-125
    • /
    • 2020
  • European Space Agency's Sentinel-1 has an improved spatial and temporal resolution, as compared to previous satellite data such as Envisat Advanced SAR (ASAR) or Advanced Scatterometer (ASCAT). Thus, the assumption used for low-resolution retrieval algorithms used by ENVISAT ASAR or ASCAT is not applicable to Sentinel-1, because a higher degree of land surface heterogeneity should be considered for retrieval. The assumption of homogeneity over land surface is not valid any more. In this study, considering that soil roughness is one of the key parameters sensitive to soil moisture retrievals, various approaches are discussed. First, soil roughness is spatially inverted from Sentinel-1 backscattering over Yanco sites in Australia. Based upon this, Artificial Neural Networks data (feedforward multiplayer perception, MLP, Levenberg-Marquadt algorithm) are compared with Fractal approach (brownian fractal, Hurst exponent of 0.5). When using ANNs, training data are achieved from theoretical forward scattering models, Integral Equation Model (IEM). and Sentinel-1 measurements. The network is trained by 20 neurons and one hidden layer, and one input layer. On the other hand, fractal surface roughness is generated by fitting 1D power spectrum model with roughness spectra. Fractal roughness profile is produced by a stochastic process describing probability between two points, and Hurst exponent, as well as rms heights (a standard deviation of surface height). Main interest of this study is to estimate a spatial variability of roughness without the need of local measurements. This non-local approach is significant, because we operationally have to be independent from local stations, due to its few spatial coverage at the global level. More fundamentally, SAR roughness is much different from local measurements, Remote sensing data are influenced by incidence angle, large scale topography, or a mixing regime of sensors, although probe deployed in the field indicate point data. Finally, demerit and merit of these approaches will be discussed.

  • PDF