• Title/Summary/Keyword: Level-set method

Search Result 1,475, Processing Time 0.033 seconds

Numerical Study of Bubble Growth in a Microchannel (미세관에서의 기포성장에 대한 수치적 연구)

  • Seo, Ki-Chel;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1891-1896
    • /
    • 2003
  • The bubble motion during nucleate boiling in a microchannel is investigated numerically. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. The computations are made for various channel sizes, liquid flow rates, and contact angles. Based on the numerical results, the bubble growth pattern and its effect on the flow and heat transfer are discussed.

  • PDF

A Study of Accuracy Improvement of an Analysis of Flow around Arbitrary Bodies by Using an Eulerian-Lagrangian Method (Eulerian-Lagrangian 방법을 사용한 임의 물체주위 유동해석의 정도 향상을 위한 연구)

  • Park I. R.;Chun H. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.3
    • /
    • pp.19-26
    • /
    • 2001
  • An Eulerian-Lagrangian method, so called immersed boundary method, is used for analysing viscous flow around arbitrary bodies, where governing equations are discretized on a regular grid by using a finite volume method. To improve the accuracy of flow near body boundaries, a second-order accurate interpolation scheme is used and a level-set based grid deformation method is presented to construct the adaptive grids around body boundaries. The present scheme is used to simulate steady flow around a semicircular cylinder mounted on the bottom of flow domain and calculated results are validated by results of a body fitted grid method. Finally, present method is applied to a complex flow around multi body and the usefulness is checked by investigating calculated results.

  • PDF

Level Set based Respiration Rate Estimation using Depth Camera (레벨 셋 기반의 깊이 카메라를 이용한 호흡수 측정)

  • Oh, Kyeong Taek;Shin, Cheung Soo;Kim, Jeongmin;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1491-1501
    • /
    • 2017
  • In this paper, we propose a method to measure respiration rate by dividing the respiration related region in depth image using level set method. In the conventional method, the respiration related region was separated using the pre-defined region designated by the user. We separate the respiration related region using level set method combining shape prior knowledge. Median filter and clipping are performed as a preprocessing method for noise reduction in the depth image. As a feasibility test, respiration activity was recorded using depth camera in various environments with arm movements or body movements during breathing. Respiration activity was also measured simultaneously using a chest belt to verify the accuracy of calculated respiration rate. Experimental results show that our proposed method shows good performance for respiration rate estimation in various situation compared with the conventional method.

ANALYSIS OF ELECTROWETTING DYNAMICS WITH LEVEL SET METHOD AND ASSESSMENT OF PROPERTY INTERPOLATION METHODS (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석 및 물성 보간 방법에 대한 고찰)

  • Park, J.K.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.551-555
    • /
    • 2010
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models. In level set method, in the mean time, material properties are made to change smoothly across an interface of two materials with different properties by introducing an interpolation or smoothing scheme. So far, the weighted arithmetic mean (WAM) method has been exclusively adopted in level set method, without complete assessment for its validity. We viscosity, thermal conductivity, electrical conductivity, and permittivity, can be an alternative. I.e., the WHM gives more accurate results than the WAM method in certain circumstances. The interpolation scheme should be selected considering various characteristics including type of property, ratio of property of two fluids, geometry of interface, and so on.

  • PDF

A Numerical Analysis on the Binary Droplet Collision with the Level Set Method (Level Set 방법을 이용한 액적 충돌 현상에 대한 수치해석)

  • Lee, Sang-Hyuk;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.559-564
    • /
    • 2008
  • A prediction of binary droplets collision is important in the formation of falling drops and the evolution of sprays. The droplet velocity, impact parameter and drop-size ratio have influence on the interaction of the droplets. By the effect of these parameter, the collision processes are generated with the complicated phenomena. The droplet collision can be classified into four interactions such as the bouncing, coalescence, reflexive separation and stretching separation. In this study, the two-phase flow of the droplet collision was simulated numerically by using the Level Set method. 2D axi-symmetric simulations on the head-on collisions in the coalescence and reflexive separation, and 3D simulation on the off-center collisions in the coalescence and stretching separation were performed. These numerical results showed good agreements with the experimental and analytical results. For tracking the identity of droplets after the collision, transport equation for the volume fraction of the each initial droplet were used. From this, the identities of droplets were analyzed on the collision of droplets having different size.

  • PDF

A Level-Set Method for Simulation of Drop Motions

  • Son, Gi-Hun;Hur, Nahm-Keon;Suh, Young-Ho;Lee, Sang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.340-346
    • /
    • 2008
  • A level-set method is developed for computation of drop motions in various engineering applications. Compared with the volume-of-fluid method based on a non-smooth volume-fraction function, the LS method can calculate an interface curvature more accurately by using a smooth distance function. Also, it is straightforward to implement for two-phase flows in complex geometries unlike the VOF method requiring much more complicated geometric calculations. The LS method is applied to simulation of inkjet process, thin film pattering and droplet collisions.

  • PDF

A Level-Set Method for Simulation of Drop Motions

  • Son, Gi-Hun;Hur, Nahm-Keon;Suh, Young-Ho;Lee, Sang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.340-346
    • /
    • 2008
  • A level-set method is developed for computation of drop motions in various engineering applications. Compared with the volume-of-fluid method based on a non-smooth volume-fraction function, the LS method can calculate an interface curvature more accurately by using a smooth distance function. Also, it is straightforward to implement for two-phase flows in complex geometries unlike the VOF method requiring much more complicated geometric calculations. The LS method is applied to simulation of inkjet process, thin film pattering and droplet collisions.

  • PDF

Design and Implementation of an Efficient Buffer Replacement Method for Real-time Multimedia Databases Environments (실시간 멀티미디어 데이터베이스 환경을 위한 효율적인 버퍼교체 기법 설계 및 구현)

  • 신재룡;피준일;유재수;조기형
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.4
    • /
    • pp.372-385
    • /
    • 2002
  • In this paper, we propose an efficient buffer replacement method for the real-time multimedia data. The proposed method has multi level priority to consider the real-time characteristics. Each priority level is divided into a cold data set that is likely to be referenced for the first time and a hot data set that is likely to be re-referenced. An operation to select the victim data is sequentially executed from the cold set with the minimum priority level to the hot set with the maximum Priority level. It is chosen only at the lower level than or equal to the priority of the transaction that requests a buffer allocation. In the cold set, our method selects a media that has the maximum size in the level for a target of victim first of all. And in the hot set, our method selects a medium that has the maximum interval of the reference first of all. Since it maintains many popular media in the limited buffer space, the buffer hit ratio is increased. It also manages many service requests. As a result, our method improves the overall performance of the system. We compare the proposed method with the Priority-Hints method in terms of the buffer hit ratio and the deadline missing ratio of transactions. It is shown through the performance evaluation that our method outperforms the existing methods.

  • PDF

ANALYSIS OF ELECTROWETTING DYNAMICS WITH CONSERVATIVE LEVEL SET METHOD (레벨셋 기법을 이용한 전기습윤 현상의 동적 거동에 대한 해석)

  • Park, J.K.;Hong, J.W.;Kang, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.84-87
    • /
    • 2009
  • Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based devices, such as liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method is based on the conservative level set method to capture the interface of two fluids without loss of mass. We applied the method to the analysis of spreading process of a sessile droplet for step input voltages and oscillation of the droplet for alternating input voltages in electrowetting. The result was compared with experimental data. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models.

  • PDF

Numerical Study on a Sliding Bubble During Nucleate Boiling

  • Son, Gihun
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.931-940
    • /
    • 2001
  • A numerical method for simulating bubble motion during nucleate boiling is presented. The vapor-liquid interface is captured by a level set method which can easily handle breaking and merging of the interface and can calculate an interfacial curvature more accurately than the VOF method using a step function. The level set method is modified to include the effects of phase change at the interface and contact angle at the wall as well as to achieve mass conservation during the whole calculation procedure. Also, a simplified model to predict the heat flux in a thin liquid microlayer is developed. The method is applied for simulation of a sliding bubble on a vertical surface to further understand the physics of partial boiling. Based on the computed results, the effects of contact angle, wall superheat and phase change on a sliding bubble are quantified.

  • PDF