• Title/Summary/Keyword: Level 2 Probabilistic Risk Assessment

Search Result 31, Processing Time 0.024 seconds

Human Risk Assessment of Perchloroethylene Considering Multi-media Exposure (다매체 노출을 고려한 Perchloroethylene의 인체위해성평가연구)

  • Seo, Jungkwan;Kim, Taksoo;Jo, Areum;Kim, Pilje;Choi, Kyunghee
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.5
    • /
    • pp.397-406
    • /
    • 2014
  • Objectives: Perchloroethylene (PCE) is a volatile chemical widely used as a solvent in the dry-cleaning and textile processing industries. It was evaluated as Group 2 "probably carcinogenic to humans" by the Integrated Risk Information System (IRIS) of the United State Environmental Protection Agency (U.S. EPA) in 2012. In order to provide a scientific basis for establishing risk management measures for chemicals on the national priority substances list, aggregate risk assessment was conducted for PCE, included in the top-10 substances. Methods: We conducted the investigation and monitoring of PCE exposure (e.g., exposure scenario, detection levels, and exposure factors, etc.) and assessed its multi-media (e.g., outdoor air, indoor air, and ground water) exposure risk with a deterministic and probabilistic approach. Results: In human risk assessment (HRA), the level of human exposure was higher in the younger age group. The exposure level through inhalation at home was the highest among the exposure routes. Outdoor air or uptake of drinking water represented less than 1% of total contributions to PCE exposure. These findings suggested that the level of risk was negligible since the Hazard Index (HI) induced by HRA was below one among all age groups, with a maximum HI value of 0.17 when reasonable maximum exposure was applied. Conclusion: In conclusion, it was suggested that despite low exposure risk, further studies are needed considering main sources, including occupational exposure.

Development of MURCC code for the efficient multi-unit level 3 probabilistic safety assessment

  • Jung, Woo Sik;Lee, Hye Rin;Kim, Jae-Ryang;Lee, Gee Man
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2221-2229
    • /
    • 2020
  • After the Fukushima Daiichi nuclear power plant (NPP) accident, level 3 probabilistic safety assessment (PSA) has emerged as an important task in order to assess the risk level of the multi-unit NPPs in a single nuclear site. Accurate calculation of the radionuclide concentrations and exposure doses to the public is required if a nuclear site has multi-unit NPPs and large number of people live near NPPs. So, there has been a great need to develop a new method or procedure for the fast and accurate offsite consequence calculation for the multi-unit NPP accident analysis. Since the multi-unit level 3 PSA is being currently performed assuming that all the NPPs are located at the same position such as a center of mass (COM) or base NPP position, radionuclide concentrations or exposure doses near NPPs can be drastically distorted depending on the locations, multi-unit NPP alignment, and the wind direction. In order to overcome this disadvantage of the COM method, the idea of a new multiple location (ML) method was proposed and implemented into a new tool MURCC (multi-unit radiological consequence calculator). Furthermore, the MURCC code was further improved for the multi-unit level 3 PSA that has the arbitrary number of multi-unit NPPs. The objectives of this study are to (1) qualitatively and quantitatively compare COM and ML methods, and (2) demonstrate the strength and efficiency of the ML method. The strength of the ML method was demonstrated by the applications to the multi-unit long-term station blackout (LTSBO) accidents at the four-unit Vogtle NPPs. Thus, it is strongly recommended that this ML method be employed for the offsite consequence analysis of the multi-unit NPP accidents.

A Method to Calculate Off-site Radionuclide Concentration for Multi-unit Nuclear Power Plant Accident (다수기 원자력발전소 사고 시 소외 방사성물질 농도 계산 방법)

  • Lee, Hye Rin;Lee, Gee Man;Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.6
    • /
    • pp.144-156
    • /
    • 2018
  • Level 3 Probabilistic Safety Assessment (PSA) is performed for the risk assessment that calculates radioactive material dispersion to the environment. This risk assessment is performed with a tool of MELCOR Accident Consequence Code System (MACCS2 or WinMACCS). For the off-site consequence analysis of multi-unit nuclear power plant (NPP) accident, the single location (Center Of Mass, COM) method has been usually adopted with the assumption that all the NPPs in the nuclear site are located at the same COM point. It was well known that this COM calculation can lead to underestimated or overestimated radionuclide concentration. In order to overcome this underestimation or overestimation of radionuclide concentrations in the COM method, Multiple Location (ML) method was developed in this study. The radionuclide concentrations for the individual NPPs are separately calculated, and they are summed at every location in the nuclear site by the post-processing of radionuclide concentrations that is based on two-dimensional Gaussian Plume equations. In order to demonstrate the efficiency of the ML method, radionuclide concentrations were calculated for the six-unit NPP site, radionuclide concentrations of the ML method were compared with those by COM method. This comparison was performed for conditions of constant weather, yearly weather in Korea, and four seasons, and the results were discussed. This new ML method (1) improves accuracy of radionuclide concentrations when multi-unit NPP accident occurs, (2) calculates realistic atmospheric dispersion of radionuclides under various weather conditions, and finally (3) supports off-site emergency plan optimization. It is recommended that this new method be applied to the risk assessment of multi-unit NPP accident. This new method drastically improves the accuracy of radionuclide concentrations at the locations adjacent to or very close to NPPs. This ML method has a great strength over the COM method when people live near nuclear site, since it provides accurate radionuclide concentrations or radiation doses.

Simulation model-based evaluation of a survey program with reference to risk analysis

  • Chang, Ki-Yoon;Pak, Son-Il
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.159-164
    • /
    • 2006
  • A stochastic simulation model incorporated with Reed-Frost approach was derived for evaluating diagnostic performance of a test used for a screening program of an infectious disease. The Reed-Frost model was used to characterize the within-herd spread of the disease using a hypothetical example. Specifically, simulation model was aimed to estimate the number infected animals in an infected herd, in which imperfect serologic tests are performed on samples taken from herds and to illustrate better interpreting survey results at herd-level when uncertainty inevitably exists. From a risk analysis point of view, model output could be appropriate in developing economic impact assessment models requiring probabilistic estimates of herd-level performance in susceptible populations. The authors emphasize the importance of knowing the herd-level diagnostic performance, especially in performing emergency surveys in which immediate control measures should be taken following the survey. In this context this model could be used in evaluating efficacy of a survey program and monitoring infection status in the area concerned.

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).

Quantitative Microbial Risk Assessment for Campylobacter spp. on Ham in Korea

  • Lee, Jeeyeon;Ha, Jimyeong;Kim, Sejeong;Lee, Heeyoung;Lee, Soomin;Yoon, Yohan
    • Food Science of Animal Resources
    • /
    • v.35 no.5
    • /
    • pp.674-682
    • /
    • 2015
  • The objective of this study was to evaluate the risk of illness from Campylobacter spp. on ham. To identify the hazards of Campylobacter spp. on ham, the general characteristics and microbial criteria for Campylobacter spp., and campylobacteriosis outbreaks were investigated. In the exposure assessment, the prevalence of Campylobacter spp. on ham was evaluated, and the probabilistic distributions for the temperature of ham surfaces in retail markets and home refrigerators were prepared. In addition, the raw data from the Korea National Health and Nutrition Examination Survey (KNHNES) 2012 were used to estimate the consumption amount and frequency of ham. In the hazard characterization, the Beta-Poisson model for Campylobacter spp. infection was used. For risk characterization, a simulation model was developed using the collected data, and the risk of Campylobacter spp. on ham was estimated with @RISK. The Campylobacter spp. cell counts on ham samples were below the detection limit (<0.70 Log CFU/g). The daily consumption of ham was 23.93 g per person, and the consumption frequency was 11.57%. The simulated mean value of the initial contamination level of Campylobacter spp. on ham was −3.95 Log CFU/g, and the mean value of ham for probable risk per person per day was 2.20×10−12. It is considered that the risk of foodborne illness for Campylobacter spp. was low. Furthermore, these results indicate that the microbial risk assessment of Campylobacter spp. in this study should be useful in providing scientific evidence to set up the criteria of Campylobacter spp..

A New Approach to Selection of Inspection Items using Risk Insight of Probabilistic Safety Assessment for Nuclear Power Plants

  • Park, Younwon;Kim, Hyungjin;Lim, Jihan;Choi, Seongsoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.2
    • /
    • pp.49-58
    • /
    • 2018
  • The regulatory periodic inspection program (PSI) conducted at every overhaul period is the most important process for confirming the safety of nuclear power plants. The PSI for operating nuclear power plants in Korea mainly consist of component level performance check that had been developed based on deterministic approach putting the same degree of importance to all the inspection items. This inspection methodology is likely to be effective for preoperational inspection. However, once the plant is put into service, the PSI must be focused on whether to minimize the risk of accident using defense-in-depth concept and risk insight. The incorporation of defense-in-depth concept and risk insight into the deterministic based safety inspection has not been well studied so far. In this study, two track approaches are proposed to make sure that core damage be avoided: one is to secure success path and the other to block the failure path in a specific event tree of PSA. The investigation shows how to select safety important components and how to set up inspection group to ensure that core damage would not occur for a given initiating event, which results in strengthening defense-in-depth level 3.

Application of Event Tree Technique for Quantification of Nuclear Power Plant Safety (원자력발전소의 정량적인 안전 해석을 위한 사건수목 기법의 응용)

  • Kim, See-Darl;Jin, Young-Ho;Kim, Dong-Ha;Park, Soo-Yong;Park, Jong-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.126-135
    • /
    • 2000
  • Probabilistic Safety Assessment (PSA) is an engineering analysis method to identify possible contributors to the risk from a nuclear power plant and now it has become a standard tool in safety evaluation of nuclear power plants. PSA consists of three phases named as Level 1, 2 and 3. Level 2 PSA, mainly focused in this paper, uses a step-wise approach. At first, plant damage states (PDSs) are defined from the Level 1 PSA results and they are quantified. Containment event tree (CET) is then constructed considering the physico-chemical phenomena in the containment. The quantification of CET can be assisted by a decomposition event tree (DET). Finally, source terms are quantitatively characterized by the containment failure mode. As the main benefit of PSA is to provide insights into plant design, performance and environmental impacts, including the identification of the dominant risk contributors and the comparison of options for reducing risk, this technique is expected to be applied to the industrial safety area.

  • PDF

Importance Analysis of In-Service Testing Components for Ulchin Unit 3 Using Risk-Informed In-Service Testing Approach

  • Kang, Dae-il;Kim, Kil-yoo;Ha, Jae-joo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.331-343
    • /
    • 2002
  • We performed an importance analysis of In-Service Testing (157) components for Ulchin Unit 3 using the integrated evaluation method for categorizing component safety significance developed in this study. The developed method is basically aimed at having a PSA expert perform an importance analysis using PSA and its related information. The importance analysis using the developed method is initiated by ranking the component importance using quantitative PSA information. The importance analysis of the IST components not modeled in the PSA is performed through the engineering judgment, based on the expertise of PSA, and the quantitative and qualitative information for the 157 components. The PSA scope for importance analysis includes not only Level 1 and 2 internal PSA but also Level 1 external and shutdown/low power operation PSA. The importance analysis results of valves show that 167 (26.55%) of the 629 IST valves are HSSCs and 462 (73.45%) are LSSCs. Those of pumps also show that 28 (70%)of the 40157 pumps are HSSCs and 12 (30%) are LSSCs.

Ecological Risk Assessment of Pesticide Residues in Agricultural Lake : Risk Quotients and Probabilistic Approach (농업용수를 공급하는 호소 수역 내 잔류 농약의 생태위해성평가 : 위해지수방법과 확률론적 방법)

  • Lee, Ji-Ho;Park, Byung-Jun;Park, Sang-Won;Kim, Won-Il;Hong, Su-Myung;Im, Geon-Jae;Hong, Moo-Ki
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.3
    • /
    • pp.316-322
    • /
    • 2011
  • BACKGROUND: Pesticides concentration was monitored in 50 agricultural lakes, and ecological risk for aquatic organism was assessed using risk quotient (RQ) and probabilistic methods. METHODS AND RESULTS: Pesticides concentrations detected in 50 agricultural lakes during peak season (June and September) were in the range of $0.17{\sim}0.99{\mu}g/L$. The RQ for algae and the other species was estimated to be 0.25 and below 0.01, indicating medium risk and no risk. Oxadiazon predominantly contributed to RQ value of 99% for algae, fishes, and amphibians. In terms of hazardous concentration at 5% of species ($HC_5$), ecological risk quotients (ERQ) for oxadiazon ranged from 0.18~0.33, showing a medium risk level. Overall, the concentrations of pesticides were much lower than $HC_5$), value. Probability of combined ecological risk for pesticides ranged from 1.82% to 2.41%. CONCLUSION(s): Combined ecological risk probability did not exceed the acceptable level of 5%, indicating no ecological risk for selected aquatic species. This study suggests that regular ecological risk assessment (ERA) will be required to protect and manage an agricultural lake. Not only ERA at screening level by comparing exposure with toxic effects for aquatic species also advanced ERA technique considering species in indigenous to Korea, chronic toxicity, pulse dose, fate, and environmental factors should be required.