• Title/Summary/Keyword: Levee Failure

Search Result 51, Processing Time 0.022 seconds

Low-Cost CAP-type TDR Exploration Techniques for Leak Detection (누수탐지를 위한 저비용 CAP형 TDR 탐사기법)

  • Kim, Jin Man;Choi, Bong Hyuck;Cho, Jin Woo;Cho, Won Beom
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1479-1487
    • /
    • 2013
  • The river levee collapse and flood damages are dramatically increased due to the floods which caused by abnormal weather nowadays. The counterplan like TDR(Time Domain Reflectometry) river levee leaking exploration technique is needed to that levee failure causes of levee failure such as levee failure by penetration, piping, inadequate levee materials selection, poor compaction are almost 52% of the failure. This research practiced various comparing experiments of existing TDR(probe and tube types) and developing CAP type TDR to evaluate acrylic small CAP mould and low-cost TDR levee leaking monitoring system which was used probe type TDR. As the result, evaluated TDR system had 20cm critical exploration performance which was a leaking exploration performance, The functional ratio of TDR exploration sensitivity of dry density was sensitive more than 3 times than dry density, and weathered granite soil foundation water contents(w)-dielectric constant(${\epsilon}$) corelation formula was suggested to measure functional ratio on developing cap type TDR system.

Risk Assessment of Levee Embankment Integrated Erosion and Seepage Failure Factor (침식과 침투영향을 고려한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.591-605
    • /
    • 2009
  • In this study the risk integrated erosion and seepage failure factor and combined risk of the levee embankment were assessed. For the research of the reliability, the risk assessment of erosion, seepage and both of them combined for the levee embankment were conducted using discharge curve and stage hydrograph generated by stochastic rainfall variation method during typhoon and monsoon season. The risk of erosion was evaluated using tractive force and the seepage analysis was performed by selecting representative cross sections for SEEP/W model analysis. And the probability of seepage failure was assessed with MFOSM analysis using critical hydraulic gradient method. Unlike deterministic analysis method, quantitative risk could be obtained and the characteristics of realistic rainfall variation patterns as well as a variety of factors contributing to levee failure could be reflected in this research. The results of this study show significantly enhanced applicability for the combined risk. As this model can be employed to determine dangerous spots for levee failure and to establish flood insurance linked with flood risk map, it will dramatically contribute to the establishment of both efficient and systematic measures for integrated flood management on a watershed.

Development of Analysis Program for Maintenances of Levee Facilities (하천제방 시설물의 유지관리를 위한 분석프로그램 개발)

  • Yoo, Byung-Sun;Park, Yong-Dae;Kim, Hual-Soo;Chang, Ki-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.704-715
    • /
    • 2008
  • The Aim of this development is the management of a forecasting analysis program based on a real-time remote sensing data. Using this program it is possible to predict a failure of levee facilities in advance. therefor, it is necessary for making plans of a safety countermove. In this development we have researched the analysis method which could operate effectively the levee facilities using real-time monitoring data from a remote sensing system and the safety managerial program using the algorism from the analysis method developed.

  • PDF

MODEL TESTS ON LEVEES REINFORCED WITH SHEET PILES UNDER HIGH WATER CONDITIONS WITH/WITHOUT SEISMIC LOADING HISTORY

  • Koseki, Junichi;Tanaka, Hiroyuki;Otsushi, Kazutaka;Nagao, Naoya;Kaneko, Masaru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.49-54
    • /
    • 2010
  • In order to study the performance of levees reinforced with steel sheet piles under high water condition, a series of model tests was conducted by simulating the high water condition before and after applying severe seismic loading history. As a result, the seepage behavior through the subsoil layers underlying the levee was not significantly affected by the seismic loading history. It was also verified that, irrespective of the seismic loading history, the sheet piles installed at the levee crest or shoulder are effective in preventing the breakage of levees caused by overflow. In addition, applicability of drainage works at the foot of the levee in preventing the seepage failure was confirmed.

  • PDF

Development of Levee Safety Revaluation for Satellite Images (위성 이미지를 활용한 제방 안정성 평가 기법 개발)

  • Bang, Young Jun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.3
    • /
    • pp.1-14
    • /
    • 2022
  • Recently, the risk of water disasters are increasing due to climate change and the aging of river levees. Existing conventional river embankment inspections have many limitations due to the consumption of a lot of manpower and budget. Thus, it is necessary to establish a new monitoring and forecast/warning method for effective flood response. This study proposes the river levee health monitoring system by analyzing the relationship between river levee deformation and hydrological factors using Sentinel-1. The variance index calculated in this study was classified into 4 grades. And the levees collapse section was judged to be a high vulnerable point in which the variance rapidly increased based on the result of the rapid increase in soil moisture. In the future, it is expected that it will be possible to advance levee maintenance technology and improve national disaster management through the advancement of the existing levee management system and automated monitoring through the forensic method that combines remote technology.

Experimental Analysis for Characteristics of Bank-Scour around Barrier (수리실험을 통한 보 연결부 제방 세굴 특성 분석)

  • Jeong, Seok Il;Lee, Seung Oh
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.4
    • /
    • pp.34-39
    • /
    • 2017
  • Typical flow regime of overflow at barrier or weir constructed in mid and small streams becomes as the submerged flow during most flood events. One of major causes of barrier failure has been reported as the levee-scour near the conjuction node between barrier and levee. However, most related design guidelines in Korea have not mentioned about the protection of levee around barrier or weir in detail. Furthermore, most previous researches have focused on the flow characteristics of overflow around several types of weirs but they did not have considered the material properties of levee itself. In this study, local scour near barrier was investigated with different material properties of levee under the submerged overflow condition which is assumed to reenact a flood event. Based on results from Fritz et al. and Mavis et al., a theoretical formula was also proposed in initial stage of laboratory experiments. And hydraulic experiments were carried out for the verification of the proposed formula. Levee was installed in the prismetic trapezoidal open channel and most parts were made of concrete except for movable section in which scour was expected to occur for the efficiency of experimental procedure. Each compaction of movable section in levee was followed by the basis of the KS F 2312. Further, after performing the experiments to find the optimum water content for each sediment, the specific amount of water was injected before flowing water. The difference between the proposed theoretical formula and experiment results was not much but considerable, which might be caused by the effect of compaction. For theoretical approach, it seemed that the formula did not take into account the compaction of levee, thus the correction coefficient for levee compaction determined in the literature was considered. Finally, the formula for the length of scour around barrier or weir was proposed, which can be useful to predict a levee in the reference design of revetment in mid and small streams. As shortly future study, scour length of levee around barrier or weir under different flow conditions such as perfect overflow condition will be studied and it will be able to contribute to suggest the design formula or criteria under all overflow conditions near barrier or weir.

Application of 3D point cloud modeling for performance analysis of reinforced levee with biopolymer (3차원 포인트 클라우드 모델링 기법을 활용한 바이오폴리머 기반 제방 보강공법의 성능 평가)

  • Ko, Dongwoo;Kang, Joongu;Kang, Woochul
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.181-190
    • /
    • 2021
  • In this study, a large-scale levee breach experiment from lateral overflow was conducted to verify the effect of the new reinforcement method applied to the levee's surface. The new method could prevent levee failure and minimize damage caused by overflow in rivers. The levee was designed at the height of 2.5 m, a length of 12 m, and a slope of 1:2. A new material mixed with biopolymer powder, water, weathered granite, and loess in an appropriate ratio was sprayed on the levee body's surface at a thickness of about 5 cm, and vegetation recruitment was also monitored. At the Andong River Experiment Center, a flow (4 ㎥/s) was introduced from the upstream of the A3 channel to induce the lateral overflow. The change of lateral overflow was measured using an acoustic doppler current profiler in the upstream and downstream. Additionally, cameras and drones were used to analyze the process of the levee breach. Also, a new method using 3D point cloud for calculating the surface loss rate of the levee over time was suggested to evaluate the performance of the levee reinforcement method. It was compared to existing method based on image analysis and the result was reasonable. The proposed 3D point cloud methodology could be a solution for evaluating the performance of levee reinforcement methods.

A Forecasting Model for the Flooded Area Fesulting from Breached Levee (하천제방의 붕괴로 인한 제내지의 침수예측 모형)

  • 이종태;한건연
    • Water for future
    • /
    • v.22 no.2
    • /
    • pp.223-231
    • /
    • 1989
  • A dynamic levee breach model is demonstrated which can be applied to various types of breach such as overtopping, breaking, and piping. Through a hypothetical simulation the sensitivity of brach width and duration in the result are discussed. the breach width has more important effect than the failure duration upon a side discharge owing to levee breach.

  • PDF

Reproduction of Piping Failure Due to the Permeable Layer Using Centrifuge Test (원심모형실험을 통한 전석층이 존재하는 제방에서의 파이핑 현상 모사)

  • Jin, Seok-Woo;Kim, Nam-Ryong;Kim, Dong-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.1-10
    • /
    • 2011
  • This paper simulates the piping effect, found levees with large difference in coefficient of permeability within the foundation such as the Gim-po Levee, via centrifuge model test which is a model test. We have also conducted a numerical analysis under the same conditions as the centrifuge model test to compare its results. First, we decided to use the centrifuge model based on the Gim-po Levee, and the tests were executed on a model levee with pore water pressure transducers. We have found that most of the water flows through the permeable layer and causes the piping effect. Via video camera footage, we have found that the piping effect occurred at the toe of the model levee. The characteristic of pressure head distribution, obtained from the pore water pressure transducers, also proves the occurrence of the piping effect. The numerical analysis results also showed the same results as the centrifuge model test. We have simulated the piping effect via centrifuge model test and believe that the centrifuge model test is viable for various tests, predictions and evaluation of the levee problems.