• Title/Summary/Keyword: Levee Experiment

Search Result 38, Processing Time 0.029 seconds

Experimental Study on Levee Seepage Considering Dynamic Head in a Trapezoidal Open-Channel (사다리꼴 개수로에서 동수두를 고려한 제방 침투에 관한 실험연구)

  • Im, Dongkyun;Kim, Kyu-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.239-245
    • /
    • 2009
  • Levees, the hydro-engineering structure, are similar to earth dams in aspects of shape and structure. However, they are different from earth dams in the external force conditions. As a levee is the structure that is complexly affected by the flow and the water stage in the river, it may be unreasonable to analyze the seepage safety as previous studies derived from the neglect of river flow. In this study, an experiment was conducted to investigate flow structures in a trapezoidal open-channel and the influence of the channel flow on the seepage through a levee. Flow structures in a trapezoidal open-channel were distinguished from a rectangular open-channel such as velocity and bottom shear stress distributions. In case with the flow velocity of 0.5 m/s, seepage water heads were higher 10 percent as compared with the stagnant case. This result is caused by dynamic heads, secondary currents, turbulent fluctuation forces, and various physical factors. It is suggested that external force boundary considered in terms of the flow as well as the water stage is proper to seepage analyses.

Experimental Study on Stability of Revetment on Inland Slope of River Levee for Prevention of Failure due to Overtopping (제방뒷비탈 월류보호공의 안정성 분석을 위한 수리실험 연구)

  • Kim, Sooyoung;Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.712-721
    • /
    • 2017
  • Recently, the intensity and frequency of floods has increasing worldwide, and flood disasters have become a big problem. Flood disasters, which account for the largest portion of disasters, are floods accompanied by typhoons and localized heavy rainfall. As a result, they cause damage of levee overtopping, in which the water level of a river rises to the levee crown. Therefore, countermeasures are essential and necessary because of the damage to the facility itself as well as to life and other property. The damage magnitude depends on the collapse of the levee. A levee that is difficult to collapse will reduce the discharge inland significantly. Accordingly, the protection of the inland slope, where the collapse of the levee is initiated, is one of the most important countermeasures In this study, revetments with various porosity and forms were suggested and hydraulic experiments were carried out for each type. The hydraulic experiments showed that the stability of a revetment in an inland slope is strongly correlated with the weight per unit area of the revetment. The relationship between the critical velocity, which is the velocity at the moment of leaving the revetment, and the weight per unit area was derived. Through this study, by applying the nature friendly revetment, which has not yet been applied to Korea, it is expected that life and property damage caused by levee overtopping during flooding can be reduced, and a nature friendly river space can be constructed.

A Study on the Water Circulation Enhancement inside Harbor Utilizing Wave Energy (파랑에너지를 이용한 항내 해수순환증진에 대한 연구)

  • 오병철;전인식;정태성;이달수
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.3
    • /
    • pp.209-221
    • /
    • 2002
  • In the present paper, a method which enhances the circulation of harbor waters by using wave energy was investigated. The overflow levee was selected as a coastal structure helping the harbor circulation, and was applied to Jeju-outer-port site so as to estimate its effectiveness quantitatively in probabilistic point of view. It was assumed that sea water influx rate through the overflow levee into the harbor depended upon wave height and tidal level and a functional relationship among them was calculated using the results of hydraulic experiment. The probability distribution of water influx could be obtained from hindcasted wave data and measured tidal elevations at Jeju harbor. The Gamma distribution was appeared to best fit the estimated influx distribution, and the optimal location of the levee was discussed. Finally, water quality purification effect was investigated by computing the contaminant material dispersion according to whether the levee was or not.

A Study for Seepage Control of Levee with a Pervious Toe Drain (제내 비탈끝 배수공을 이용한 제방의 침투조절에 관한 연구)

  • Kong, Young-San;Kang, Tae-Uk;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.569-581
    • /
    • 2012
  • The levee is the facility which is constructed along with river for the protection of landside and for passage of water when there is a flood. When the seepage is exposed to the atmosphere on the landside surface of levee, it may eventually lead to levee failure. The seepage water may be removed from the landside surface by a properly designed drainage system. The purpose of the study is to show seepage control effect of a pervious toe drain, and to compare two drainage methods of a pervious toe drain. One is the pervious toe drain suggested by U.S. Army Corps of Engineers (USACE) and the other is that suggested by Japan Institute of Construction Engineering (JICE). The levee model constructed has the following dimension: the base width is 2.6 m; the crest width is 0.4 m; the side slope 1 : 2. The water depth in the riverside is 0.5 m. The shape of the toe drain by USACE is triangular. The shape of the toe drain by JICE is rectangular. They were installed with the base length of 0.4 m. The levee model without the toe drain showed saturation surface on the land side in the experiment but not with the toe drain. The experiment results was applied to a numerical analysis model using SEEP/W to calibrate and verify. The numerical analysis results for 35 cm and 30 cm drain width showed that the drain by JICE is a little bit safer than the drain by USACE. It is also easier to construct the toe drain by JICE. The results in the study would be applied to plan the seepage control for a levee with pervious toe drain.

A Study of Real Scale Experiment on Protection Technique of Levee Overflow Failure Using Mixed Bio-Polymer and Riprap (피마자유기반 바이오폴리머와 골재를 혼합한 제방월류 보강제 실규모 실험연구)

  • Joongu, Kang;Hong-Kyu, Ahn
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2023
  • Developmental technique is mixed bio-polymer and riprap to protect the breaking of a levee. Purpose of new technique is restraint from scour and failure of bankside. Technique of this research can apply shore protection and embankment overflow reinforcement works. Because This technique is easy for construction. In order to apply the technique in fields, It is need to conduct the test-bed or real scale experiment study for stability-guaranteed. In case of embankment overflow reinforcement works, It is difficult to conduct test bed in the field. Real scale experiment was conducted in River Experiment Center. Purpose of real scale experiment is to reappear disaster scene by embankment overflow and verify restraint from scour and failure about the technique. In this experiment results, We can find the strength effect of mixed bio-polymer and riprap.

A Study on Stability of Levee Revetment in Meandering Channel (만곡수로 내의 호안 안정성 연구)

  • Kim, Sooyoung;Yoon, Kwang Seok;Kim, Hyung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1077-1087
    • /
    • 2015
  • The levee protect lifes, houses, and properties by blocking overflow of river. The revetment is forced to be covered on the slope of levee in order to prevent erosion. The stability of revetment is very important enough to directly connected to the stability of levee. In this study, the weak points of revetment on meandering channel were found by movable revetment experiment and the velocity and the water surface elevation (WSE) were measured at main points. The 3-D numerical simulations were performed under same conditions with experiment. And unclear flow characteristics by the limit of measuring instruments were analyzed through numerical simulation. Consequently, the section of large wall shear stress and the failure section are almost the same. Despite of small wall shear stress, the revetments located at right bank were carried away because of circulation zone due to secondary flow by meandering. With existing riprap design formula, the sizes of riprap determined using maximum local velocity were 1.5~4.7 times greater than them using mean velocity. As a result of this study, it is necessary to calculate the size of riprap in other ways for meandering and straight channel. At a later study, if the weighted value considered the radius of curvature and shape of hydraulic structure is applied to riprap design formula, it is expected that the size of revetment was evaluated rationally and accurately.

Evaluation of critical tractive forces of vegetation mats enhanced with biopolymer mixed soil (바이오폴리머 혼합토와 결합된 식생매트의 한계 소류력 평가)

  • Lee, Du Han;Kim, Myounghwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.3
    • /
    • pp.167-179
    • /
    • 2020
  • Recently, new levee material has been developed to enhance natural soil strength and vegetation growth using biopolymer. In the study, critical tractive force of vegetated mats mixed with biopolymer mixed soil has been evaluated to apply the mixed soil to levee construction material. The mixed soil has been produced by mixing beta-glucan, clay, and sand. Full scale test bodies have been constructed with 3 cm thick of the mixed soil. Total 4 test bodies have been constructed and experimented. Critical tractive forces have been evaluated by observation and measurement of failure conditions and soil loss. Although performance of the vegetated revetments are affected by vegetation coverage conditions, the critical tractive forces are shown about 40 N/㎡ and the critical velocities are shown about 4 m/sec by full scale experiment. Erosion resistance is also enhanced by combination of root and net with mat materials.

Study on Behaviour of Flood Wave-front Varied with Levee Breach Speed in Flat Inundation Area (평탄지형 제내지에서의 제방붕괴속도에 따른 범람홍수파 선단 거동에 관한 연구)

  • Yoon, Kwang Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.537-544
    • /
    • 2017
  • An experimental study was carried out to investigate the characteristics of the propagation distance of a flood wave considering the levee failure speed in a flat inundation area. The Ritter solution for one dimensional flow was considered to formulate the experimental results and a representative form with coefficients of k and m, which consider the three dimensional flow characteristics, was applied. The experiments showed that the propagation velocity of the wave front in the inundation area was influenced by the levee breach speed as well as the initial water level, which is a significant variable representing the flood wave behavior. In addition, coefficients k and m are not constants, but variables that vary with levee breach speed. An empirical formula was also suggested using the experimental results in the form of the relationships between k and m. In this study, a large-scale experiment for flood inundation was carried out to examine the behavior of flooding in the inundated area and the relationships between the levee breach speed and wave-front propagation velocity were suggested based on the experimental results. These research results are expected to be used as the baseline data to draw a flow inundation map, establish an emergency action plan, and verify the two-dimensional numerical model.

Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section (제방붕괴 형상의 비대칭성에 따른 붕괴흐름의 영향 분석)

  • Kim, Sooyoung;Choi, Seo-hye;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.557-565
    • /
    • 2016
  • The risk of collapse in hydraulic structures has become more elevated, due to the increased probability and scale of flooding caused by global warming and the resulting abnormal climatic conditions. When a levee, a typical hydraulic structure, breaks, an enormous breach flow pours into the floodplain and much flood damage then occurs. It is important to accurately calculate the breach discharge in order to predict this damage. In this study, the variation of the breach discharge with the asymmetry in the cross-section of the levee breach was analyzed. Through hydraulic experiments, the cross-section of the breach was analyzed during the collapse using the BASD (Bilateral ASymmetry Degree), which was developed to measure the degree of asymmetry. The relationship of the breach discharge was identified using the BASD. Additionally, the variation of the breach flow measured by the BASD was investigated through a 3-D numerical analysis under the same flow conditions as those in the experiment. It was found that the assumption of a rectangular breach cross-section, which is generally used for the estimation of the inundation area, can cause the breach discharge to be overestimated. According to the BASD, the breach flow is decreased by the interference effect in the breach section of the levee. If the breach flow is calculated while considering the BASD in the numerical analysis of the flooding, it is expected that the predicted inundation area can be estimated accurately.

Availability test of eco-levee construction for presevation of bangudae petroglyphs (생태제방을 이용한 반구대암각화 보존방안 연구)

  • Lee, Seung-Oh;Chegal, Sun-Dong;Cho, Hong-Je
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.931-939
    • /
    • 2016
  • Bangudae Petroglopys of the national treasure No. 285 located in elevation of 53 m to 57 m have been damaged by repetition of submergence and exposure due to the Sayeon-dam of EL.60 m constructed in down stream. In this study, as a preservation plan of the petroglyphs from the contact with water, the construction of eco-levee was suggested and its effect was investigated in the views of hydraulic engineering. It was designed to be located aside of 80 m from Bangudae Petroglyphs with the length of 440 m in streamwise direction, and it was need to construct a new channel maintaining the original hydraulic capacity and conveyance. Hydraulic characteristics such as water surface elevations and velocities near Bangudae Petroglyphs were measured after the eco-levee was installed in the hydraulic model with the scale of 1:50. It showed that there were not much changes of water surface elevations and velocities between sayeon-dam spillway EL. 60 m (Suggestion 1) and EL. 54 m (Suggestion 2). It was concluded the eco-levee could be made of natural materials like soil, pebble, gravel in terms of allowable velocity and shear stresses. The slope of water surface at Suggestion 2 was steeper, and velocities near Bangudae Petroglyphs were also faster than Suggestion 1. As the vorties occured at the left side in Suggestion 2, more detailed study is required.