• Title/Summary/Keyword: Lens optimization

Search Result 124, Processing Time 0.022 seconds

Wide-angle Optical Module Design for Mobile Phone Camera Using Recursive Numerical Computation Method (재귀적 수치 계산법을 적용한 모바일 폰용 광각 광학계 설계)

  • Kyu Haeng Lee;Sung Min Park;Kye Jin Jeon
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.4
    • /
    • pp.164-169
    • /
    • 2024
  • We applied recursive numerical computation to create a basic design of a camera optical module for mobile phones. To enhance the resolution performance for a 38-degree field of view, we constructed the optical system with six non-spherical lenses. However, to increase its applicability to a compact mobile phone, we limited the overall length to 5 mm in the design. Using the data obtained from the basic design, we proceeded with optimization design using the Zemax design tool. The optimized optical system achieved a resolution performance with a modulation transfer function value of more than 19% for a 280 lines/mm pattern and image distortion within 1.0% for all wavelength rays. In this paper, we verify the feasibility of using recursive numerical computation for the basic design of a compact mobile phone camera.

Multi-camera Calibration Method for Optical Motion Capture System (광학식 모션캡처를 위한 다중 카메라 보정 방법)

  • Shin, Ki-Young;Mun, Joung-H.
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.6
    • /
    • pp.41-49
    • /
    • 2009
  • In this paper, the multi-camera calibration algorithm for optical motion capture system is proposed. This algorithm performs 1st camera calibration using DLT(Direct linear transformation} method and 3-axis calibration frame with 7 optical markers. And 2nd calibration is performed by waving with a wand of known length(so called wand dance} throughout desired calibration volume. In the 1st camera calibration, it is obtained not only camera parameter but also radial lens distortion parameters. These parameters are used initial solution for optimization in the 2nd camera calibration. In the 2nd camera calibration, the optimization is performed. The objective function is to minimize the difference of distance between real markers and reconstructed markers. For verification of the proposed algorithm, re-projection errors are calculated and the distance among markers in the 3-axis frame and in the wand calculated. And then it compares the proposed algorithm with commercial motion capture system. In the 3D reconstruction error of 3-axis frame, average error presents 1.7042mm(commercial system) and 0.8765mm(proposed algorithm). Average error reduces to 51.4 percent in commercial system. In the distance between markers in the wand, the average error shows 1.8897mm in the commercial system and 2.0183mm in the proposed algorithm.

Design of Aspheric Imaging Optical System having 24mm Focal Length for MWIR with Facing Symmetric Lenses (마주보는 대칭렌즈를 가지는 MWIR용 초점거리 24mm의 비구면 결상광학계 설계)

  • Lee, Sang-Kil;Kim, Boo-Tae;Lee, Dong-Hee
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.9
    • /
    • pp.183-189
    • /
    • 2018
  • This study deals with the design and development of imaging optics having 24mm focal length for MWIR ($3{\sim}5{\mu}m$) with two symmetrical lenses facing each other. We used CodeV in our optical design, and we performed the optimization process to have the resolution and angle of view satisfying the user's requirements. The materials of lenses were limited to two types, including KCIR035 with a refractive index of 1.7589, developed in Korea. The optical system designed in this way consists of two aspherical lenses made of KCIR035 material having the same shape and one spherical lens made of Si. Here, the arrangement of the two aspherical lenses is characterized by having a symmetrical structure facing each other. And this optical system has a resolution of MTF value of 0.35 or more at a line width of 20 lp / mm. Therefore, it is considered that this optical system has the capability to be applied to a thermal imaging camera using a $206{\times}156$ array MWIR detection device having a pixel size of $25{\mu}m$.

Optimization of Optical Structure of Lightguide Panel for Uniformity Improvement of Edge-lit Backlight (엣지형 LED 백라이트의 균일도 향상을 위한 도광판의 광구조 최적화)

  • Lee, Jung-Ho;Nahm, Kie-Bong;Ko, Jae-Hyeon;Kim, Joong-Hyun
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.61-68
    • /
    • 2010
  • Optical simulation methods were applied to the edge-lit LED backlight for LCD TV applications in order to optimize the optical structure of the light guide plate(LGP), and thus to improve the uniformity properties by removing the bright spots caused by LED's. The edge-lit LED backlight consisted of three white LED's with a lamp cover, a light guide plate, and a reflection film. When there was no pattern on the entrance side surface of the LGP, the illuminance uniformity was sensitively dependent on the distance d between the LED and the entrance surface. The illuminance uniformity increased with d but its increasing rate slowed down when d was beyond ~ 1.5 mm. When micro-patterns such as a lenticular lens array (LLA) or a serration pattern were formed on the entrance surface, the illuminance uniformity was improved substantially even for the case of very small d. At the same simulation condition, the lightguide with serration pattern showed a better uniformity than that with LLA pattern. Additional improvement could be achieved by changing the refractive index of the micro-patterns. These results suggest that using micro-patterns is a very effective way to reduce the bright spots due to their refracting function for the concentrated incident rays onto the LGP.