• Title/Summary/Keyword: Lens model

Search Result 344, Processing Time 0.029 seconds

The design and the analysis of a LED illumination lens using the overlapped model (중첩모델을 이용한 조명용 LED 렌즈설계 및 분석)

  • You, Ilhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.157-164
    • /
    • 2017
  • In this research, the overlapped illumination model was used for designing a freeform LED lens with a uniform illuminance distribution on its illuminating plane, and their performances and tolerances were compared. And, the illuminations on a illumination plane was measures for change with average illuminance and illuminance uniformity. As a result of the tolerance analysis about z-axis direction change, thickness change in lens and tilt change of light emission and characteristic change in LED source, overlapped model and divergent illumination model are similar to the performance about Z-axis direction change of light emission in LED source. but the uniformity illumination value in this overlapped model is more remarkably value than it in divergent illumination model about thickness change in LED lens. Also, even though the lens based on a divergent illumination model showed good performance compare to the lens based on an overlapped illumination model, the latter was less the deviation to variation of LED beam radiation ability.

Zoom Lens Distortion Correction Of Video Sequence Using Nonlinear Zoom Lens Distortion Model (비선형 줌-렌즈 왜곡 모델을 이용한 비디오 영상에서의 줌-렌즈 왜곡 보정)

  • Kim, Dae-Hyun;Shin, Hyoung-Chul;Oh, Ju-Hyun;Nam, Seung-Jin;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.14 no.3
    • /
    • pp.299-310
    • /
    • 2009
  • In this paper, we proposed a new method to correct the zoom lens distortion for the video sequence captured by the zoom lens. First, we defined the nonlinear zoom lens distortion model which is represented by the focal length and the lens distortion using the characteristic that lens distortion parameters are nonlinearly and monotonically changed while the focal length is increased. Then, we chose some sample images from the video sequence and estimated a focal length and a lens distortion parameter for each sample image. Using these estimated parameters, we were able to optimize the zoom lens distortion model. Once the zoom lens distortion model was obtained, lens distortion parameters of other images were able to be computed as their focal lengths were input. The proposed method has been made experiments with many real images and videos. As a result, accurate distortion parameters were estimated from the zoom lens distortion model and distorted images were well corrected without any visual artifacts.

The design and the analysis of a LED lens for forming a uniform illumination on an illuminating plane (균일한 조도를 위한 LED 조명용 렌즈 설계 및 분석)

  • You, Ilhyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.954-964
    • /
    • 2015
  • In this research, an overlapped illumination model was newly proposed for designing a freeform LED lens with a uniform illuminance distribution on its illuminating plane. Based on the proposed model and conventional illumination models, freeform lenses were designed and their performances and tolerances were compared. As a result of the tolerance analysis about thickness change in lens, position, size change, central direction change of light emission and characteristic change in LED source. This proposed model and divergent illumination model are similar to the performance about central direction change of light emission in LED source. but the uniformity illumination value in this proposed model is more remarkably value than it in divergent illumination model about characteristic change in LED source.

Distortion Correction Modeling Method for Zoom Lens Cameras with Bundle Adjustment

  • Fang, Wei;Zheng, Lianyu
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.140-149
    • /
    • 2016
  • For visual measurement under dynamic scenarios, a zoom lens camera is more flexible than a fixed one. However, the challenges of distortion prediction within the whole focal range limit the widespread application of zoom lens cameras greatly. Thus, a novel sequential distortion correction method for a zoom lens camera is proposed in this study. In this paper, a distortion assessment method without coupling effect is depicted by an elaborated chessboard pattern. Then, the appropriate distortion correction model for a zoom lens camera is derived from the comparisons of some existing models and methods. To gain a rectified image at any zoom settings, a global distortion correction modeling method is developed with bundle adjustment. Based on some selected zoom settings, the optimized quadratic functions of distortion parameters are obtained from the global perspective. Using the proposed method, we can rectify all images from the calibrated zoom lens camera. Experimental results of different zoom lens cameras validate the feasibility and effectiveness of the proposed method.

Sustainability of freshwater lens in small islands under climate change and increasing population

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.145-145
    • /
    • 2019
  • Groundwater and rainwater are the only sources of freshwater in small islands as many islands lack surface water sources. Groundwater occurring in the form of freshwater lens floating on denser seawater is highly dependent on natural recharge from rainfall. A sharp interface numerical model for regional and well scale modeling is selected to assess the sustainability of freshwater lens in the island of Tongatapu. In this study, 29 downscaled General Circulation Model(GCM) predictions are input to the recharge model based on water balance modelling. Three GCM predictions which represent wet, dry and medium conditions are selected for use in the groundwater flow model. Total freshwater volume and number of saltwater intruded wells are simulated under various climate scenarios with GCM predicted rainfall pattern, sea level rise and pumping. Simulations indicate that the sustainability of the freshwater lens is threatened by the frequent droughts which are predicted under all scenarios of recharge. The natural depletion of the lens during droughts and increase in water demands, leads to saltwater upconing under the pumping wells. Implementation of drought management measures is of utmost importance to ensure sustainability of freshwater lens in future.

  • PDF

Optical Model of a Human Eye's Crystalline Lens Based on a Three-layer Liquid Lens

  • Kong, Meimei;Chen, Xin;Yuan, Yang;Zhao, Rui;Chen, Tao;Liang, Zhongcheng
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.177-180
    • /
    • 2019
  • Based on liquid-lens technology and our previous findings on the optical model of the Chinese eye, the liquid lens is applied in the research of the crystalline-lens optical model. Theoretical models of three-layer liquid lenses are built with COMSOL software, and the effect of voltage on the shape of the interface between two liquids is analyzed. By polynomial fitting, different equations describing the interface shape are set up under different voltages. Finally, the optical system of the human eye with a three-layer liquid lens is built and analyzed with Zemax optical design software, and moreover the optical system models of emmetropia, myopia, and hyperopia are presented. This method to build a model of the human eye with a variable-focus liquid lens can provide a novel idea for more practical human-eye models for clinical regulation and control in the future.

Judgment Gap Analysis between Service Provider and Consumer for Service Design

  • Hong, Seung-Kweon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.77-83
    • /
    • 2012
  • Objective: The aim of this paper is to introduce a method that can measure and analyze the judgment gaps between service providers and customers. Background: It is important to understand the good service that service providers and customers are thinking. If there is judgment gap between service providers and customers, it would cause an unsatisfactory service. The judgment gap should be thoroughly investigated for a good service design. Method: Lens model is a human decision making model that was proposed by Brunswick(1952). This study indicates whether the Lens model can be applied to analyze judgment gaps between service providers and customers. As a case study, a library lending service was selected. 5 librarians and 15 customers participated in the experiment that investigates their judgments on a good service. The obtained data were analyzed by a modified lens model. Results: Cue weighting policies of consumers and service providers were similar, except that consumers gave higher weight on tangibility than service providers. Service providers and consumers had a good knowledge on the service quality, but they could not well apply the knowledge to judge it. Conclusion: The lens model may be used to analyze judgment gaps between service providers and consumers in the other service areas. The decision cues that were used in this study can be changed, depending on the characteristics of the target service. Application: The method that is proposed in this study may help to investigate and analyze both consumers' and service providers' judgments on a variety of services.

An Optimal Combination of Illumination Intensity and Lens Aperture for Color Image Analysis

  • Chang, Y. C.
    • Agricultural and Biosystems Engineering
    • /
    • v.3 no.1
    • /
    • pp.35-43
    • /
    • 2002
  • The spectral color resolution of an image is very important in color image analysis. Two factors influencing the spectral color resolution of an image are illumination intensity and lens aperture for a selected vision system. An optimal combination of illumination intensity and lens aperture for color image analysis was determined in the study. The method was based on a model of dynamic range defined as the absolute difference between digital values of selected foreground and background color in the image. The role of illumination intensity in machine vision was also described and a computer program for simulating the optimal combination of two factors was implemented for verifying the related algorithm. It was possible to estimate the non-saturating range of the illumination intensity (input voltage in the study) and the lens aperture by using a model of dynamic range. The method provided an optimal combination of the illumination intensity and the lens aperture, maximizing the color resolution between colors of interest in color analysis, and the estimated color resolution at the combination for a given vision system configuration.

  • PDF

Model on the Capillary Action-Induced Dynamics of Contact Lens (모세관 작용에 의한 콘택트 렌즈의 운동 모델)

  • Kim, Dae-Soo
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.6 no.2
    • /
    • pp.85-97
    • /
    • 2001
  • A mathematical model was proposed to analyze the damped motion of contact lens which is initially displaced from the equilibrium position. The model incorporates the differential equations and their numerical solution program, based on the formulations of restoring force arising from the capillary action in the tear-film layer between the lens and cornea. The model predicts the capillary action induced surface tension, time dependence of displacement of lens when it is released from the equilibrium position. It seems that the motion of lens is similar to the typical over-damped oscillation caused by the large viscous friction in the liquid layer between the cornea and lens. The effect of variables such as base curves, lens diameters and thickness of tear film layer were illustrated by the computer simulation of the derived program. The time required for the lens to return to the original position increases as the liquid layer thickness increases and it decreases as the diameter of lens increases. With the certain value of base curve the time interval is found to be minimum. The free vibrations of lenses were also simulated varying the parameters such as base curve, diameter, layer thickness. The resonant frequencies are inversely proportional to the liquid layer thickness and it increases as the lens diameter increases. The resonant frequency of lens has a maximum when the diameter is of certain value. If the external impulse or force of the same frequency as the natural frequency of contact lens acted on the cornea in vivo it may cause an excessive movement and thus it might cause the distortion 10 the lens or be pulled off the eye.

  • PDF

Development of Detailed Korean Adult Eye Model for Lens Dose Calculation

  • Han, Haegin;Zhang, Xujia;Yeom, Yeon Soo;Choi, Chansoo;Nguyen, Thang Tat;Shin, Bangho;Ha, Sangseok;Moon, Sungho;Kim, Chan Hyeong
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.1
    • /
    • pp.45-52
    • /
    • 2020
  • Background: Recently, the International Commission on Radiological Protection (ICRP) lowered the dose limit for the eye lens from 150 mSv to 20 mSv, highlighting the importance of accurate lens dose estimation. The ICRP reference computational phantoms used for lens dose calculation are mostly based on the data of Caucasian population, and thus might be inappropriate for Korean population. Materials and Methods: In the present study, a detailed Korean eye model was constructed by determining nine ocular dimensions using the data of Korean subjects. The developed eye model was then incorporated into the adult male and female mesh-type reference Korean phantoms (MRKPs), which were then used to calculate lens doses for photons and electrons in idealized irradiation geometries. The calculated lens doses were finally compared with those calculated with the ICRP mesh-type reference computational phantoms (MRCPs) to observe the effect of ethnic difference on lens dose. Results and Discussion: The lens doses calculated with the MRKPs and the MRCPs were not much different for photons for the entire energy range considered in the present study. For electrons, the differences were generally small, but exceptionally large differences were found at a specific energy range (0.5-1 MeV), the maximum differences being about 10 times at 0.6 MeV in the anteroposterior geometry; the differences are mainly due to the difference in the depth of the lens between the MRCPs and the MRKPs. Conclusion: The MRCPs are generally considered acceptable for lens dose calculations for Korean population, except for the electrons at the energy range of 0.5-1 MeV for which it is suggested to use the MRKPs incorporating the Korean eye model developed in the present study.