• Title/Summary/Keyword: Lens fabrication

Search Result 221, Processing Time 0.028 seconds

Ultra-Precision Machining of Off-Axis Asymmetric Large-area Reflecting Mirror Using ELID Grinding Process (ELID 연삭을 이용한 비축 비구면 렌즈의 초정밀 가공)

  • Jung, Myung-Won;Shin, Gun-hwi;Kim, Geon-Hee;Ohmori, Hitoshi;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • This study focused on the application of ELID mirror-surface grinding technology to the manufacture of off-axis asymmetric large-area reflecting mirrors made of BK7 glass. The size of the parts, such as asymmetric large-area mirrors or lens, made form-accuracy or roughness especially hard to measure after machining because of the measuring range limit of measurement devices. In this study, the ELID grinding system has been set up for mirror-surface machining experiments manufacturing off-axis asymmetric lenses. A measuring method using a reference workpiece has been suggested to measure the form-accuracy and roughness. According to the experimental results, even when using only a reference workpiece, it is confirmed that the surface roughness was 8 nmRa and form-accuracy was 80 nmRMS, with a best fit asymmetric radius when using a grinding wheel of #8,000. It is found that the accuracy of large-area parts could be estimated by the proposed process.

Fabrication of Scattering Layer for Light Extraction Efficiency of OLEDs (RIE 공정을 이용한 유기발광다이오드의 광 산란층 제작)

  • Bae, Eun Jeong;Jang, Eun Bi;Choi, Geun Su;Seo, Ga Eun;Jang, Seung Mi;Park, Young Wook
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.1
    • /
    • pp.95-102
    • /
    • 2022
  • Since the organic light-emitting diodes (OLEDs) have been widely investigated as next-generation displays, it has been successfully commercialized as a flexible and rollable display. However, there is still wide room and demand to improve the device characteristics such as power efficiency and lifetime. To solve this issue, there has been a wide research effort, and among them, the internal and the external light extraction techniques have been attracted in this research field by its fascinating characteristic of material independence. In this study, a micro-nano composite structured external light extraction layer was demonstrated. A reactive ion etching (RIE) process was performed on the surfaces of hexagonally packed hemisphere micro-lens array (MLA) and randomly distributed sphere diffusing films to form micro-nano composite structures. Random nanostructures of different sizes were fabricated by controlling the processing time of the O2 / CHF3 plasma. The fabricated device using a micro-nano composite external light extraction layer showed 1.38X improved external quantum efficiency compared to the reference device. The results prove that the external light extraction efficiency is improved by applying the micro-nano composite structure on conventional MLA fabricated through a simple process.

Design and Fabrication for the Development of Auto Pattern Maker (자동취형기 개발을 위한 설계 및 제작)

  • Lee, Young-Il;Kim, Jung-Hee;Park, Jee-Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.18 no.3
    • /
    • pp.231-239
    • /
    • 2013
  • Purpose: To design and fabricate the auto pattern maker for the development. Methods: we got the necessary data, needed in design, by using CAD. Based on the these data, we fabricated the trial product for the development of the auto pattern maker. Results: The auto pattern maker were composed with combinations of many elements; pattern making assembly, control panel, frame attachment and prober unit. The pattern making assembly was comprised of the cutter, the pattern holder, pattern remover and silence cover which could minimize the sound during the cutting process. The control panel was designed to be connected and operated with the main printed circuit board. The prober could get the eye shape data by scanning of 1.8 degrees around the groove of the frame through the encoding data according to the address. After starting, scanning was carried out in two passes, i.e. one right-handed and one left-handed. Communication connector could send the eye shape data from auto pattern maker to outer system with the RS232C transmission system. By using the one-way analysis of variance, we got the error rate of cut pattern size for ${\Phi}22mm$, ${\Phi}55mm$ and ${\Phi}62mm$. Because F-value was 0.510 and p-value was 0.601, no statistically significant differences were found. Also, the mean cutting error of the auto pattern maker was 0.0274 mm. Conclusions: we could succeed in making the trial product by applying it to the development of the auto pattern maker. The role of this auto pattern maker is to find a exact required size of lens to fit the frame by measuring the frame. The acquired data are transferred to outer system for grinding and finishing with patternless process. Also, the trial product can produce pattern to fit the frame. Therefore, it was confidently expected that the optometrists could handily produce pattern to fit the frame with this trial product and dispense the ophthalmic lens because of its efficiency and convenience compared to the past.

Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells (IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법)

  • Kim, Sung-Chul;Yoon, Ki-Chan;Kyung, Do-Hyun;Lee, Young-Seok;Kwon, Tae-Young;Jung, Woo-Won;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

Study on Fiber Laser Annealing of p-a-Si:H Deposition Layer for the Fabrication of Interdigitated Back Contact Solar Cells (IBC형 태양전지 제작을 위한 p-a-Si:H 증착층의 파이버 레이저 가공에 관한 연구)

  • Kim, Sung-Chul;Lee, Young-Seok;Han, Kyu-Min;Moon, In-Yong;Kwon, Tae-Young;Kyung, Do-Hyun;Kim, Young-Kuk;Heo, Jong-Kyu;Yoon, Ki-Chan;Yi, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.430-430
    • /
    • 2008
  • Using multi plasma enhanced chemical vapor deposition system (Multi-PECVD), p-a-Si:H deposition layer as a $p^+$ region which was annealed by laser (Q-switched fiber laser, $\lambda$ = 1064 nm) on an n-type single crystalline Si (100) plane circle wafer was prepared as new doping method for single crystalline interdigitated back contact (IBC) solar cells. As lots of earlier studies implemented, most cases dealt with the excimer (excited dimer) laserannealing or crystallization of boron with the ultraviolet wavelength range and $10^{-9}$ sec pulse duration. In this study, the Q-switched fiber laser which has higher power, longer wavelength of infrared range ($\lambda$ = 1064 nm) and longer pulse duration of $10^{-8}$ sec than excimer laser was introduced for uniformly deposited p-a-Si:H layer to be annealed and to make sheet resistance expectable as an important process for IBC solar cell $p^+$ layer on a polished n-type Si circle wafer. A $525{\mu}m$ thick n-type Si semiconductor circle wafer of (100) plane which was dipped in a buffered hydrofluoric acid solution for 30 seconds was mounted on the Multi-PECVD system for p-a-Si:H deposition layer with the ratio of $SiH_4:H_2:B_2H_6$ = 30:120:30, at $200^{\circ}C$, 50 W power, 0.2 Torr pressure for 20 minutes. 15 mm $\times$ 15 mm size laser cut samples were annealed by fiber laser with different sets of power levels and frequencies. By comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 50 mm/s of mark speed, 160 kHz of period, 21 % of power level with continuous wave mode of scanner lens showed the features of small difference of lifetime and lowering sheet resistance than before the fiber laser treatment with not much surface damages. Diode level device was made to confirm these experimental results by measuring C-V, I-V characteristics. Uniform and expectable boron doped layer can play an important role to predict the efficiency during the fabricating process of IBC solar cells.

  • PDF

Realization of the multi-phase level CGH according to the multi-channel encoding method using a PAL-SLM (PAL-SLM을 이용한 다채널 부호화 방법에 따른 다위상형 CGH의 광학적 구현)

  • Jung, Jong-Rae;Baek, Woon-Sik;Kim, Jung-Hoi;Kim, Nam
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.299-308
    • /
    • 2004
  • We proposed more efficient encoding methods that can design a multi-channel multi-level phase only computer-generated hologram(CGH) that can reconstruct many objects simultaneously without a conjugate image. We used a fabrication technique for the pixel oriented CGH for designing the pattern of the proposed multi-channel CGH. We investigated the difference of the optical efficiency(η), mean square error(MSE) and signal-to-noise ratio(SNR) of multi-channel CGHs that were designed by three kinds of encoding methods according to the number of quantization phase levels, and we estimated the performance of the pattern of the proposed multi-channel CGH. Generally, as the number of input objects' reference patterns stored in the CGH is increased, the reconstruction quality of the CGH is degraded. But we observed through computer simulation that the diffraction efficiency of the 1-ch CGH is 70%, and those of the 2-ch, 4-ch, 8-ch CGHs are 62%, 62% and 63%. Therefore we found that the diffraction efficiencies of the multi-channel CGHs using the newly proposed encoding method are similar to that of 1-ch CGH. We implemented the CGH optically using a liquid crystal spatial light phase modulator that consisted of a PAL-SLM efficiently coupled with a XGA type LCD by an optical lens and an LD for illuminating the LCD. We discussed the output images that are reconstructed from the PAL-SLM.

Fabrication and Transmission Experiment of the Distributed Feedback Laser Diode(DFB-LD) Module for 2.5Gbps Optical Telecommunication System (2.5Gbps 광통신용 distrbuted feedback laser diode(DFB-LD) 모듈 제작 및 광송신 실험)

  • 박경현;강승구;송민규;이중기;조호성;장동훈;박찬용;김정수;김홍만
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.423-430
    • /
    • 1994
  • We designed and fabricated the single mode fiber pigtailed DFB-LD module for 2.5 Gbps optical communication system. In the design of the DFB-LD module, we made the module divided into two parts of inner sub-module and outer 14-pin butterfly package and cylindrical shaped sub-module contain quasi confocal 2 lens system including optical isolator and electrical connection between these parts via hybrid substrate of bias T circuit. Laser welding was used to assemble the sub-module which requires accurate fixing between optical elements. The fabricated DFB-LD module showed optical coupling efficiency of 20% and - 3 dB small signal response of more than 2.6 GHz. We confirmed mechanical reliability of the module by temperature cycle test where the tested module exhibit optical power fluctuation of less than 10%. Finally we evaluated the performance of the fabricated DFB-LD module as light source of 2.5 Gbps optical communication system, sensitivity of - 30.2 dBm was obtained through 47 km optical fiber transmission under the criterion of $1\times10^{-10}$ BER and transmission penalties were 1.5 dB caused by extinction ratio and 1.0 dB caused by chromatic dispersion of normal single mode fiber. fiber.

  • PDF

Damage Measurement for Molybdenum Thin Film Using Reflection-Type Digital Holography (반사형 디지털 홀로그래피를 이용한 Molybdenum 박막의 손상 측정)

  • Kim, Kyeong-Suk;Jung, Hyun-Il;Shin, Ju-Yeop;Ma, Hye-Joon;Kwon, Ik-Hwan;Yang, Seung-Pill;Hong, Chung-Ki;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2015
  • In the fabrication of electronic circuits used in electronic products, molybdenum thin films are deposited on semiconductors to prevent oxidation. During the deposition, the presence of a particle or dust at the interface between the thin film and substrate causes the decrease of adhesion, performance, and life cycle. In this study, a damage measurement targeting two kinds of glass substrate, with and without particles, was performed in order to measure the change in the molybdenum thin film deposition area in the presence of a particle. Clean and dirty molybdenum thin film specimens were fabricated and directly deposited on a substrate using the sputtering method, and a reflection-type digital holographic interferometer was configured for measuring the damage. Reflection-type digital holography has several advantages; e.g., the configuration of the interferometer is simple, the measurement range can be varied depending on the magnification of a microscopic lens, and the measuring time is short. The results confirm that reflection-type digital holography is useful for the measurement of the damage and defects of thin films.

Design and fabrication of a high power LED searchlight (고출력 LED 탐조등의 설계 및 제작)

  • Kim, Se-Jin;Kim, Sun-Jae;Ha, Hee-Ju;Kil, Gyung-Suk;Kim, Il-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.737-743
    • /
    • 2014
  • This paper dealt with a retrofit high power LED searchlight to replace conventional 1kW halogen searchlights. The design specification meets KDS 6230-1046-1 and KS V 8469. An optical lens with the beam angle of $6^{\circ}$ was used to meet the luminous intensity of 800,000cd at $0^{\circ}$ in horizontal line. Heat dissipation of the LED searchlight adopted a free air cooling type which does not use a fan or a heat-pipe. From the test results, power consumption of the prototype LED searchlight was 148W which was saved by 85% comparing a halogen searchlight of 1kW. Luminous intensity was 945,000cd at $0^{\circ}$ in horizontal line, satisfying KS V 8469. Luminous efficacy was improved by 4.7 times higher than that of the halogen searchlights. Beam angle, color temperature, and color rendering index(CRI) was $5.4^{\circ}$, 5,500K, and 70, respectively. Surface temperature of the LED searchlight was below $60^{\circ}C$ and surrounding temperature of the SMPS installed inside was below $50^{\circ}C$ which were satisfied with the IEC 60092-306.

Evaluation of the Usefulness of Patient Customized Shielding Block Made with 3D Printer in the Skin Cancer Electron Beam Therapy (전자선치료 시 3D 프린터로 제작한 환자 맞춤형 차폐체의 유용성 평가)

  • Ahn, Ki-Song;Jung, Woo-Chan;Kim, Dae-Hyun;Kim, Moo-Sub;Yoon, Do-Kun;Shim, Jae-Goo;Suh, Tae-Suk
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.447-454
    • /
    • 2019
  • In order to improve and supplement the shielding method for electron beam treatment, we designed a patient-specific shielding method using a 3D printer, and evaluated the usefulness by comparing and analyzing the distribution of electron beam doses to adjacent organs. In order to treat 5 cm sized superficial tumors around the lens, a CT Simulator was used to scan the Alderson Rando phantom and the DICOM file was converted into an STL file. The converted STL file was used to design a patient-specific shield and mold that matched the body surface contour of the treatment site. The thickness of the shield was 1 cm and 1.5 cm, and the mold was printed using a 3D printer, and the patient customized shielding block (PCSB) was fabricated with a cerrobend alloy with a thickness of 1 cm and 1.5 cm. The dosimetry was performed by attaching an EBT3 film on the surface of the Alderson Rando phantom eyelid and measuring the dose of 6, 9, and 12 MeV electron beams on the film using four shielding methods. Shielding rates were 83.89%, 87.14%, 87.39% at 6, 9, and 12 MeV without shielding, 1 cm (92.04%, 87.48%, 86.49%), 1.5 cm (91.13%, 91.88% with PSCB), 92.66%) The shielding rate was measured as 1 cm (90.7%, 92.23%, 88.08%) and 1.5 cm (88.31%, 90.66%, 91.81%) when the shielding block and the patient-specific shield were used together. PCSB fabrication improves shielding efficiency over conventional shielding methods. Therefore, PSCB may be useful for clinical application.