• 제목/요약/키워드: Lens Module Assembly

Search Result 34, Processing Time 0.024 seconds

Automatic Focus Control for Assembly Alignment in a Lens Module Process (렌즈 모듈 생산 공정에서 조립 정렬을 위한 자동 초점 제어)

  • Kim, Hyung-Tae;Kang, Sung-Bok;Kang, Heui-Seok;Cho, Young-Joon;Park, Nam-Gue;Kim, Jin-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.2
    • /
    • pp.70-77
    • /
    • 2010
  • This study proposed an auto focusing method for a multi-focus image in assembling lens modules in digital camera phones. A camera module in a camera phone is composed of a lens barrel, an IR glass, a lens mount, a PCB board and aspheric lenses. Alignment among the components is one of the important factors in product quality. Auto-focus is essential to adjust image quality of an IR glass in a lens holder, but there are two focal points in the captured image due to thickness of IR glass. So, sharpness, probability and a scale factor are defined to find desired focus from a multi-focus image. The sharpness is defined as clarity of an image. Probability and a scale factors are calculated using pattern matching with a registered image. The presented algorithm was applied to a lens assembly machine which has 5 axes, two vacuum chucks and an inspection system. The desired focus can be determined on the local maximum of the sharpness, the probability and the scale factor in the experiment.

The Design of a Self Adjustment Module for $\mu-part$ Assembly ($\mu$-부품 조립용 Self Adjustment Module 개발)

  • Lee Changwoo;Song Junyeob;Ha Taeho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.401-406
    • /
    • 2005
  • According to the ubiquitous times that is new important topic, the miniature is demanded in the industry at large. The high accuracy and accumulation make the assembly equipment and the production equipment huge from the size of view. The huge equipment brings about the expensive price of the equipment, a low flexibleness and a low productivity. It makes the manufacturing equipment huge that the accuracy only depends on the mechanism stiffness. The position of two assembled parts is transformed with the global coordinate system whose datum is machine coordinate system. The purpose of this research is invention of the module that can adjust one part to the order part automatically. The module that has a function of self adjustment only takes a stiffness in assemble direction and can be moved freely in the other direction so this function makes a self adjustment. The self adjustment module reduces the tact time and also diminishes the inferior goods and makes reconfigurable machine in $\mu-part$ assembly.

  • PDF

The Study on the System of Improving the Assembly Tolerance of Cellphone Camera Module (휴대폰 카메라 모듈의 조립공차 개선 시스템에 관한 연구)

  • Ye, In-Soo;Cheong, Seon-Hwan;Choi, Seong-Dae;Hyun, Dong-Hoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.5
    • /
    • pp.57-63
    • /
    • 2010
  • Tolerance analysis is one of the most important processes to improve the image quality of products. High resolution camera module for mobile phones needs precision assembly technology since the module becomes smaller and thinner. This paper will focus on the unit tolerance and the assembly tolerance which can affect the performance of the module. Lens shading and relative illumination were used to evaluate the optical axis scatter for each component on camera and estimate the assembly yield rate based on the evaluation result. A program was developed to analyze the impact on optical axis by each module, then to optimize the dimensions and tolerance for reducing the scatter of optical axis assembly. Through the simulation, though a rate of relative illumination was declined in where optical axis is displaced $100{\mu}m$ from sensor center, MTF performance is not influenced by increasing in optical axis displacement. It was seen that assembly yield was improved in result of simulation after correcting optical axis tolerance.

Tolerance Analysis and Design Improvement of a Lens System for Mobile Phone Camera (휴대폰용 카메라 모듈의 렌즈 시스템에 대한 공차 해석 및 설계 개선에 관한 연구)

  • Jung, Sang-Jin;Choi, Byung-Lyul;Choi, Dong-Hoon;Kim, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1063-1068
    • /
    • 2008
  • A lens system of a camera module for mobile phones is comprised of the composition and design of various shapes of lens. To improve responses such as the modular transfer function (MTF), a lens system should always be constructed by considering uncertainty that can be caused by manufacturing and assembly error. In this study, tolerance optimization using the Latin Hypercube Sampling (LHS) technique is performed. In order to reduce the computational burden of the tolerance optimization process and decrease the influence from numerical noise effectively, we use the Progressive Quadratic Response Surface Modeling (PQRSM), which is one of Sequential Approximate Optimization (SAO) techniques. Using this method, we achieved optimal tolerance for each lens and obtained reliability for satisfying user‘s requirements. In addition, through the design process the manufacturing and assembly cost of a lens system was reduced.

  • PDF

Development of Die Technology of Mobile Phone Camera Module (모바일 폰 카메라 모듈 금형기술 개발)

  • Park, Joon-Hong;Jeon, Eon-Chan;Kim, Tae-Ho;Moon, Soon-Kyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.4
    • /
    • pp.17-23
    • /
    • 2008
  • Development of die technology for holder and barrel dies is necessary according to minimization of lens assembly, image sensor, and connectors. In these cases, there are two technical problems arising from die design. One is determination of knock-out pin location in die set. Minimization of lens assembly size make it difficult to obtain ejecting space. The other is whether or not high-precision die technology is possible to reduce torque variation when holer and barrel products is assembled. In this study, multi-cavity die set was developed taking advantage of gear-driven ejecting method. In the developed technology, die manufacturing technology was guaranteed with a high-precision level.

  • PDF

Development of Automatic Visual Inspection for the Defect of Compact Camera Module

  • Ko, Kuk-Won;Lee, Yu-Jin;Choi, Byung-Wook;Kim, Johng-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2414-2417
    • /
    • 2005
  • Compact Camera Module(CCM) is widely used in PDA, Celluar phone and PC web camera. With the greatly increasing use for mobile applications, there has been a considerable demands for high speed production of CCM. The major burden of production of CCM is assembly of lens module onto CCD or CMOS packaged circuit board. After module is assembled, the CCM is inspected. In this paper, we developed the image capture board for CCM and the imaging processing algorithm to inspect the defects in captured image of assembled CCMs. The performances of the developed inspection system and its algorithm are tested on samples of 10000 CCMs. Experimental results reveal that the proposed system can focus the lens of CCM within 5s and we can recognize various types of defect of CCM modules with good accuracy and high speed.

  • PDF

Developing Automatic Lens Module Assembly System Using 3D Simulation (3D 시뮬레이션을 활용한 렌즈모듈 자동화조립시스템 개발)

  • Moon, Dug-Hee;Lee, Jun-Seok;Baek, Seung-Geun;Zhang, Bing-Lin;Kim, Yeong-Gyoo
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.65-74
    • /
    • 2007
  • Virtual manufacturing (VM) is a powerful technology for developing a new product, new equipment and new manufacturing system, and three-dimensional (3D) simulation is a core technology in VM. 3D simulation involves both mechanical simulation and discrete event simulation. This paper introduces a case study of implementing 3D simulation for developing an automatic assembly line in a Korean optical factory. This factory produces a lens module that is the part of a phone-camera. 3D simulation technology is applied from the early stage of development. In the conceptual design and the initial design phases for individual equipment, 3D mechanical simulation using $CATIA^{(R)}$ and $IGRIP^{(R)}$ is conducted. 3D discrete event simulation with $QUEST^{(R)}$ is applied to the detailed design of the equipment and of the whole system. The focus of the simulation is to verify the technical and economical feasibility of the new automatic system. As a result, the takt time is reduced to the quarter of the manual system, and the number of workers in a line is reduced tremendously.

  • PDF

Finite Element Analysis of Glass Lens Forming Process Using Open Die (개방형 금형을 이용한 유리 렌즈 성형 해석)

  • 나진욱;임성한;전병희;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.143-147
    • /
    • 2003
  • Despite of outstanding optical performance of glass lens, glass lens have not been widely used because of poor productivity and high cost due to manufacturing process i.e. grinding, polishing. However, press-forming method of glass lens overcomes this disadvantage because of mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform precisely measured in order to prevent incomplete products and to increase in life of die. The present paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameter of open die is selected in standard of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

  • PDF