• 제목/요약/키워드: Lens Injection Molding Process

검색결과 61건 처리시간 0.03초

사출 성형 조건이 에프세타 렌즈의 유효면 특성에 미치는 영향 (Effect of Injection Molding Conditions of Effective Surface Properties of F-theta Lens)

  • 박용우;장기;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권9호
    • /
    • pp.20-27
    • /
    • 2021
  • The effective surface of lens was studied for injection molding process and to enable mass production of f-theta lens, which is the primary component of laser printers and laser scanning systems. Injection molding is an optimal method if f-theta lens is frequently used for the mass production of plastic lenses as an aspherical lens that requires ultra-precision. A uniform injection molding system should be maintained to produce high quality lenses. Additionally, to maintain these injection molding systems, various factors such as pressure, speed, temperature, mold and cooling should be considered. However, a lens with the optical characteristics of an f-theta lens can be obtained. The effects of melting and cooling of plastic resin on the effective surface of f-theta lenses and the numerous factors that affect the injection molding process were studied.

플라스틱 광학렌즈 사출성형에 있어서 수축 변형량 예측을 위한 사출성형 조건 탐색에 관한 연구 (A study on searching method of molding condition to control the thickness reduction of optical lens in plastic injection molding process)

  • 곽태수;오오모리히토시;배원병
    • 한국정밀공학회지
    • /
    • 제21권2호
    • /
    • pp.27-34
    • /
    • 2004
  • In the injection molding of plastic optical lenses, the molding conditions have critical effects on the quality of the molded lenses. Since there are many molding parameters involved in injection molding process, determination of the molding conditions for lens molding is very important in order to precisely control the surface contours of an optical lens. Therefore this paper presents the application of neural network in suggesting the optimized molding conditions for improving the quality of molded parts based on data of FE Analysis carried out through CAE software, Timon-3D. Suggested model in this paper, which serves to learn from the data of FE Analysis and induce the values for optimized molding conditions. has been implemented for searching the molding conditions without void and with minimized thickness shrinkage at lens center of injection molding optical lens. As the result of this study. we have confirmed that void creation at the inside of lens is primarily determined by mold temperature and thickness shrinkage at center of lens is primarily determined by the parameters such as holding pressure and mold temperature.

사출금형을 이용한 비구면 렌즈의 제조기술에 관한 연구 (A Study on the Manufacturing Technology of the Aspheric Lens using Injection Molding)

  • 최헌종;이석우;강은구
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 금형가공 심포지엄
    • /
    • pp.76-83
    • /
    • 2002
  • The injection molding of the plastic optics is basically same as the conventional molding except it requires very intricate control of all the molding processing parameters. In the plastic optics, the problem of injection molding is the shrinkage. The shrinkage must be removed and predicted. This shrinkage is becoming more important than any other problems in precision molding because it can affect the focal length of a lens or the total performance of the optical system. This study focused on avoiding the shrinkage that the mold design allows for the optics. In making mold, the surface accuracy(P-V) of the lower and lower mold are $0.201{\mu}m\;and\;0.434{\mu}m$ respectively. A surface roughness(Ra) is below $0.02{\mu}m$ due to selecting the appropriate tools and using the injection molding machine in high degree. In injection molding of the plastic lens, mold temperature, resine temperature and injecting pressure are important process parameters. Injection molding process is carried out according to varying mold temperature and injecting pressure. As a result P-V(peak to valley) of spheric lens is $3.478{\mu}m$ and that of aspheric lens is $1.786{\mu}m$.

  • PDF

에프세타 렌즈의 사출 성형 해석에 관한 연구 (A Study on the Analysis of Injection Molding of F-theta Lens)

  • 박용우;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.1-6
    • /
    • 2021
  • In this study, we investigate the injection molding of f-theta lens, an important element of the laser scanning unit of laser printers and scanning systems. The f-theta lens is an aspherical plastic lens that must be molded with a precision of seconds. An injection molding method is often used for mass producing aspherical plastic lenses at a low cost. In the injection molding process, costs related to forming and injection are included. Therefore, in this study, to determine the shrinkage and deformation of injection molded f-theta lens, we predict the pressure and temperature distributions. Further, based on the analysis of the predictions, we maximize the design efficiency and verify the cost and development period reduction.

Pickup 렌즈의 사출조건이 복굴절 및 굴절율에 미치는 영향에 관한 연구 (A Study on Influence of Parameters and Characteristics in the Injection Process on the Birefringence and Refractive Index for Pickup Lens)

  • 이승준;현동훈
    • 한국공작기계학회논문집
    • /
    • 제16권6호
    • /
    • pp.21-28
    • /
    • 2007
  • Injection molding process factors such as molding temperature, injection pressure, flow rate and flow velocity, must be controlled properly in filling and packing phases in the injection molding process. In this study, effects of these factors on the injection molding were investigated through the flow analysis for birefringence and refractive index for pickup lens. This paper presents the birefringence and refractive index reduced with increasing the holding pressure and also the holding pressure time. And there are interaction with birefringence and fill time in the injection process. The optimal conditions through DOE are validated by using injection molding analysis.

사출성형시 굴절율 변화를 고려하기 위한 플라스틱 비구면 렌즈의 광선추적기법 (Ray Tracing of a Plastic Aspheric Lens by Considering Index Distribution Induced from Injection Molding)

  • 엄혜주;박근
    • 소성∙가공
    • /
    • 제18권2호
    • /
    • pp.128-134
    • /
    • 2009
  • The present study covers an integrated simulation method to evaluate optical performance of an aspheric plastic lens by connecting an injection molding analysis with a ray tracing simulation. Traditional ray tracing methods have based on the assumption that the optical properties of a lens are homogeneous throughout the entire volume. This assumption is to a certain extent unrealistic for injection-molded plastic lenses because material properties vary at every point due to the injection molding effects. To take into account the effects of the inhomogeneous optical properties of the molded lens, a numerical scheme is developed to calculate the distribution of refractive index induced from the injection molding process. This index distribution is then reflected onto CODE $V^{(R)}$ simulation and used to calculate ray paths in inhomogeneous media. The proposed tracing scheme is implemented on the tracing of an aspheric lens for a mobile phone camera module.

사출온도조건이 에프세타 렌즈의 표면조도와 표면형상에 미치는 영향에 관한 연구 (Effect of Injection Temperature Condition on Root Mean Square and Peak-to-Valley of F-theta Lens)

  • 박용우;문성민;류성기
    • 한국기계가공학회지
    • /
    • 제20권6호
    • /
    • pp.114-120
    • /
    • 2021
  • This study is focused on the root mean square and peak-to-valley based on the injection conditions of the f-theta lens, one of the main components of laser printers and laser scanning systems. The f-theta lens of an aspherical plastic lens requires ultra-preaction. Injection molding is typically used for the mass production of aspherical plastic lenses. In the injection-molding method, the resin in the lens shape is filled with the resin after melting the plastic pellets at a constant temperature and then cooled. It is necessary to maintain a uniform injection molding system to produce high-quality lenses. These injection-molding systems are influenced by different factors, such as pressure, speed, temperature, mold, and cooling. It is possible to obtain a lens that exhibits the optical characteristics required to achieve harmony. We investigated the root mean square and peak-to-valley caused by variations in temperature, a critical parameter in the melting and cooling of plastic resins generated inside and outside the injection mold.

등온압축성형공법을 이용한 폴리머 렌즈 성형 (Isothermal Compression Molding for a Polymer Optical Lens)

  • 오병도;권현성;김순옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.996-999
    • /
    • 2008
  • Aspheric polymer lens fabrication using isothermal compression molding is presented in this paper. Due to increasing definition of an image sensor, higher precision is required by a lens which can be used as a part of an imageforming optical module. Injection molding is a factory standard method for a polymer optical lens. But achievable precision using injection molding has a formidable limitation due to the machining of complex mold structure and melting and cooling down a polymer melt under high pressure condition during forming process. To overcome the precision requirement and limitation using injection molding method, isothermal compression molding is applied to fabrication of a polymer optical lens. The fabrication condition is determined by numerical simulations of temperature distribution and given material properties. Under the found condition, the lens having a high precision can successfully be reproduced and does not show birefringence which results often in optical degradation.

  • PDF

광픽업용 비구면 렌즈 사출성형 공정의 수치해석 (Numerical Analysis for the Injection Molding of an Aspheric Lens for a Photo Pick-up Device)

  • 박근;한철엽
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.163-170
    • /
    • 2004
  • In order to produce high-quality optical components, aspheric lenses have been widely applied in recent years. An aspheric lens consists of aspheric surfaces instead of spherical ones, which causes difficulty in the design process as well as the manufacturing procedure. Although injection molding is widely used to fabricate optical lenses owing to its high productivity, there remains lots of difficulty to determine appropriate mold design factors and injection molding parameters. In the injection molding fields, computer simulation has been effectively applied to analyze processes based on the shell analysis so far. Considering the geometry of optical lenses, however, numerical analysis based on solid elements has been reported as more reliable approach than shell -based one. The present work covers three-dimensional injection molding simulation using MP1/Flow3D and relevant deformation analysis of an injection molded plastic lens based on solid elements. Numerical analysis has been applied to the injection molding processes of an aspheric lens for a photo pick-up device. The reliability of the proposed approach has been verified in comparison with the experiments.

광학렌즈 사출성형금형 설계에 있어서 CAE기술의 활용 (Application of Birefringence CAE in Mould Design of Optic Lens Injection Molding Process)

  • 야마노이 미키오;곽태수;정종교
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.1-6
    • /
    • 2012
  • This study is focused on simulation technology in injection molding process for plastic optic lenses. The CAE program, $3D-TIMON^{TM}$ is used for the injection molding simulation with O-PET resin material. The design for different gate shape and runner layout has been under review by CAE simulation results. Moreover, the prediction of birefringence and polarized light in injection molded optic lenses has been tested by the CAE Program. The simulation results have been expected to effectively use in the design of injection molding mould.