• 제목/요약/키워드: Lens Injection Molding Process

검색결과 61건 처리시간 0.03초

형상정보 추출을 통한 비구면 렌즈 설계 및 성형해석에 관한 연구 (Aspherical Lens Design and Injection Mold Analysis Using Extracted Shape Information)

  • 송기혁;김병찬;윤호섭;양지경;김기범;XiaoHo;조명우
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.437-442
    • /
    • 2015
  • The development of polishing technology has enabled the production of injection molds with high quality surfaces and shapes. For products such as mobile phones which require high quality performance the use of plastic materials has many constraints such as shrinkage and deflection. The purpose of the current research is to use reverse engineering in order to find and analyze the data of a selected aspherical lens and then creating a process to design an improved lens. Additionally, the improved lenses are subject to molding analysis. In order to solve this problem, the lens construction program, Zemax, was used to analyze and optimize performance. In the case of optimization, the object was to eliminate spherical aberration and to find good MTF data. The result of the optimization data was similar to the MTF data found from a random lens. Specific resin and analysis conditions were selected and CAD modeling was done to enhance the injection molding analysis.

LabVIEW 를 활용한 실시간 렌즈 사출성형 공정상태 진단 시스템 개발 (Development of Real-Time Condition Diagnosis System Using LabVIEW for Lens Injection Molding Process)

  • 나초록;남정수;송준엽;하태호;김홍석;이상원
    • 한국정밀공학회지
    • /
    • 제33권1호
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, a real-time condition diagnosis system for the lens injection molding process is developed through the use of LabVIEW. The built-in-sensor (BIS) mold, which has pressure and temperature sensors in their cavities, is used to capture real-time signals. The measured pressure and temperature signals are processed to obtain features such as maximum cavity pressure, holding pressure and maximum temperature by the feature extraction algorithm. Using those features, an injection molding condition diagnosis model is established based on a response surface methodology (RSM). In the real-time system using LabVIEW, the front panels of the data loading and setting, feature extraction and condition diagnosis are realized. The developed system is applied in a real industrial site, and a series of injection molding experiments are conducted. Experimental results show that the average real-time condition diagnosis rate is 96%, and applicability and validity of the developed real-time system are verified.

초소형 렌즈 사출성형시 냉각효율 향상을 위한 박판형 러너의 설계 및 해석 (Design and Analysis of Shell Runners to Improve Cooling Efficiency in Injection Molding of Subminiature Lens)

  • 윤승탁;박근
    • 대한기계학회논문집A
    • /
    • 제39권10호
    • /
    • pp.1021-1028
    • /
    • 2015
  • 최근 휴대폰용 카메라에 널리 사용되는 초소형 렌즈는 사출성형으로 생산되고 있다. 초소형 렌즈는 제품 크기에 비해 러너부가 상태적으로 큰 비중을 차지하는 특성이 있어 이에 특화된 금형설계 및 성형조건의 설정이 필요하다. 본 연구에서는 초소형 렌즈의 사출성형을 위한 박판형 러너구조를 제안하였다. 제안된 러너구조를 적용한 사출성형 공정의 전산모사를 수행하고, 해석 결과를 기존의 원통형 러너의 결과와 비교하였다. 해석 결과 박판형 러너의 경우 원통형 러너에 비해 냉각시간이 상당부분 절감되나 사출압은 다소 증가됨을 확인하였다. 또한 박판형 러너의 두께를 변화시켜가며 해석을 수행하여 유동특성과 냉각특성의 변화를 종합적으로 고려한 최적의 러너두께를 결정하였다.

보정 프로그램을 이용한 Plastic 렌즈 Core의 보정에 관한 연구 (A Study on the Improvement of the Shape Accuracy of Plastic Lens by Compensation Program)

  • 우선희;이동주
    • 한국공작기계학회논문집
    • /
    • 제17권4호
    • /
    • pp.112-118
    • /
    • 2008
  • In order to meet the optical performance in the process of the micro lens manufacturing with plastics, it is important to embody accuracy in shape and surface roughness to the intended design. Since it is difficult to machine exactly the mold core of lens fit to the designed shape, in this paper, a simple program using MATLAB is developed for shape correction of the mold core after first machining it. This program evaluates correction parameters(aspheric coefficients and curvature) and generates aspheric NC data for compensating the core surface in prior machining process. The program provides the way to manufacture plastic injection molding lens with aspheric shape of high precision, and is expected to be effective for correction and to shorten the processing time.

비구면 광학렌즈 성형에 있어서 유한요소법과 신경회로망을 이용한 사출조건 예측 시스템의 개발 (The prediction of the optimum injection conditions of aspherical lens by using FEM and Neural Network)

  • 곽태수;스즈키토오루;오오모리히토시;배원병
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.168-171
    • /
    • 2002
  • A neural network model for predicting the quality or soundness of the injected plastic aspherical lens based on process parameters has been developed. The approach uses a Real Time Recurrent Neural Network 4-5-2 (RTRN) trained based on input/output data that were taken from FE analysis worts carried out through a CAE software. The system has been developed to search an optimum set of process parameters and reduce the time required for planning the conditions of plastic injection molding at the design stage.

  • PDF

마이크로 렌즈 어레이 금형의 가공특성에 관한 연구 (A Study on the Machining Characteristics for Micro Lens Array Mold)

  • 정재엽;이동주;홍성민;제태진;이응숙
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.370-375
    • /
    • 2002
  • Recently, the interest on micro optical parts has increased rapidly with the development of technology related to microsystems. Among the optical parts, micro lens is one of the most broadly used micro parts. To mass-produce the micro lenses, it is very effective to use the mold insert and injection molding process. There are many methods to fabricate the mold insert for micro lenses: electroforming, etching, mechanical micromachining and so on. In this study, we fabricated the mold insert for micro lenses using a micro ball endmill to apply mechanical micromaching method and analyzed the effect of main process parameters such as spindle speed, feed rate, dwell time on the processed surface. Then, using fabricated the mold insert we fabricated the micro lenses through injection molding process.

  • PDF

사출성형 융합공정 기반 수술실 무영등용 PMMA 렌즈 제작에 관한 연구 (A Study on the PMMA Lens Fabrication for Surgical Light Based on Injection Molding Convergence Process)

  • 강보안;오형종;정병호;정남인
    • 한국융합학회논문지
    • /
    • 제6권1호
    • /
    • pp.43-48
    • /
    • 2015
  • 본 연구는 수술실 무영등용 PMMA 렌즈를 무결함 상태로 사출성형하는 조건을 조사하였다. 렌즈 제작용 수지는 PMMA를 적용하였으며 금형은 자체 제작한 가열-냉각 방식의 금형을 사용하였다. 사출성형 시 금형의 가열온도가 낮을수록 플라스틱 수지의 유동성에 영향을 미쳐 미성형이 발생하거나 웰드 라인, 플로우 마크가 발생하고, 가열온도가 높으면 휨 변형이 발생하였다. 이러한 결함은 냉각시간이 길어짐에 따라 PMMA 수지 결정화에 기인하는 것으로 판단된다. 본 연구를 통해 PMMA 수지로 결함이 없는 렌즈를 성형하는 최적의 조건은 금형 코어의 가열온도는 110[$^{\circ}C$]였으며, 냉각시간은 25[sec]임을 밝혀내어 최적의 가열-냉각 온도 프로파일링을 확립하는 계기를 마련하였다. PMMA소재를 이용한 광학렌즈의 제작은 낮은 생산단가를 구현할 수 있으며 이로 인해 수술실 무영등에 적용된 플라스틱 광학렌즈에 적극 활용될 것으로 기대된다.

A study on the fabrication method of middle size LGP using continuous micro-lenses made by LIGA reflow

  • Kim, Jong-Sun;Ko, Young-Bae;Hwang, Chul-Jin;Kim, Jong-Deok;Yoon, Kyung-Hwan
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.171-176
    • /
    • 2007
  • LCD-BLU (Liquid Crystal Display-Back Light Unit) of medium size is usually manufactured by forming numerous dots with $50{\sim}300\;{\mu}m$ in diameter by etching process and V-grove shape with $50\;{\mu}m$ in height by mechanical cutting process. However, the surface of the etched dots is very rough due to the characteristics of the etching process and V-cutting needs rather high cost. Instead of existing optical pattern made by etching and mechanical cutting, 3-dimensional continuous micro-lens of $200\;{\mu}m$ in diameter was applied in the present study. The continuous micro-lens pattern fabricated by modified LIGA with thermal reflow process was tested to this new optical design of LGP. The manufacturing process using LIGA-reflow is made up of three stages as follows: (i) the stage of lithography, (ii) the stage of thermal reflow process and (iii) the stage of electroplating. The continuous micro-lens patterned LGP was fabricated with injection molding and its test results showed the possibility of commercial use in the future.

균일 냉각을 고려한 Thick-Wall 형상의 플라스틱 렌즈 쾌속 금형 제작 (Manufacturing of Rapid Tooling for Thick-Wall Plastic Lens Mold with Conformal Cooling Channel)

  • 박형필;차백순;이상용;최재혁;이병옥
    • Design & Manufacturing
    • /
    • 제1권1호
    • /
    • pp.27-32
    • /
    • 2007
  • In the optical application demand for high quality lens is increasing. Plastics lenses are demanded more than glass lenses for large size lenses as well as micro-size lenses. It is difficult to apply typical straight cooling channels of injection mold to lens molding due to its non-uniform temperature distribution. In this study, we manufactured molds for plastic lenses with the conventional cooling channels and conformal cooling channels produced by the DMLS process. We evaluated cooling performance for the 2 molds by injection molding experiment. Also, uniformity of the temperature distribution was tested by infrared camera and temperature monitoring. We confirmed that the cooling performance and temperature uniformity with the conformal cooling channels is much improved from the ones with the conventional. The cooling time with the conformal cooling channels was reduced 30% compared with the conventional cooling channels.

  • PDF

MR Fluid를 이용한 비구면 렌즈 연마 시스템 개발 및 기초 연마 특성 분석 (Development of the Aspherical Lens Polishing System with MR Fluid and Analysis of the Basic Polishing Characteristic of MR Polishing System)

  • 이정원;조명우;하석재;홍광표;조용규;김병민
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.92-99
    • /
    • 2014
  • An aspherical lens, which resolves several problems with a spherical lens,typically serves asa key part of an optical system. Generally, an aspherical lens is fabricated using a diamond turning machine or by mean of injection molding. However, residual stress and/or tool marks can arise when using a commercial fabricating method such as DTM or injection molding. A polishing process, thus, is commonly used to obtain a high-precision aspherical lens. In this study, a polishing method using MR fluid was applied to minimize several problems, in this case residual stress and the creation of tool marks, during the cutting process. The MR polishing system was developed to polish aspherical lenses. A series of experiments were performed to obtain a very fine surface roughness. PMMA (the lens material for molding) was used as a workpiece, and the gap size, magnetic field intensity, wheel speed and feed rate were selected as the parameters in this study. Finally, a very fine surface roughness of Ra=2.12nm was obtained after MR polishing.