• Title/Summary/Keyword: Lens Design

Search Result 847, Processing Time 0.028 seconds

Design of a Condenser Lens System using a Thin Lens Combination (얇은 렌즈 조합을 이용한 집속 렌즈 시스템 설계)

  • Lim, Sun-Jong;Choi, Ji-Yeon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.517-522
    • /
    • 2011
  • Most of SEM is double condenser lens system. Two condenser lenses are required to provide the high demagnification ratios necessary for forming nanometer probes. The thin lens concept provides a highly useful basis for preliminary calculations in a broad range of situations. It is an easy way to understand the electron beam paths in column. Demagnification is easily calculated by this method. In this paper, we present design processes for condenser lens's demagnification by using thin lens combination model. Also, we verify the reliability of our design processes by comparing the modeled demagnification with these of corrected condenser lens.

Wind-lens turbine design for low wind speed

  • Takeyeldein, Mohamed M.;Ishak, I.S.;Lazim, Tholudin M.
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.147-155
    • /
    • 2022
  • This research proposes a wind-lens turbine design that can startup and operate at a low wind speed (< 5m/s). The performance of the wind-lens turbine was investigated using CFD and wind tunnel testing. The wind-lens turbine consists of a 3-bladed horizontal axis wind turbine with a diameter of 0.6m and a diffuser-shaped shroud that uses the suction side of the thin airfoil SD2030 as a cross-section profile. The performance of the 3-bladed wind-lens turbine was then compared to the two-bladed rotor configuration while keeping the blade geometry the same. The 3-bladed wind-lens turbine successfully startup at 1m/s and produced a torque of 66% higher than the bare turbine, while the two-bladed wind-lens turbine startup at less than 4m/s and produced a torque of 186 % higher than the two-bladed bare turbine at the design point. Findings testify that adding the wind-lens could improve the bare turbine's performance at low wind speed.

Continuous-phase Lens Design via Binary Dielectric Annular Nanoslits

  • Woongbu Na;Seung-Yeol Lee;Hyuntai Kim
    • Current Optics and Photonics
    • /
    • v.7 no.3
    • /
    • pp.304-309
    • /
    • 2023
  • In this study, a binary dielectric annular nanoring lens is proposed to cover the full range of optical phase. The lens is designed numerically, based on the effective-medium theory. The performance of the proposed lens is verified for the cases of single-focal and dual-focal lenses. The efficiency of a single-focal lens is improved by 17.19% compared to a binary dielectric lens, and that of a dual-focal lens shows enhancements of 13.11% and 49.41% at the two focal points. This lens design can be applied to other optical components with axially symmetric structures.

HYPERSPECTRAL IMAGING SPECTROMETER WITH A NOVEL ZOOMING FUNCTION

  • Choi Jin;Kim Tae Hyung;Kong Hong Jin;Lee Jong-Ung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.213-216
    • /
    • 2005
  • A novel hyperspectral imaging spectrometer controlling spatial and spectral resolution individually has been proposed. This imaging spectrometer uses a zoom lens as a telescope and a focusing element. It can change the spatial resolution fixing the spectral resolution or the spectral resolution fixing the spatial resolution. Here, we report the concept of the hyperspectral imaging spectrometer with the novel zooming function and the optical design of a zoom lens as the focusing element. By using lens module and third-order aberration theory, we have presented the initial design of four-group zoom lens with external entrance pupil. And the optimized zoom lens with a focal length of 50 to 150 mm is obtained from the initial design by the optical design software. As a result, the designed zoom lens shows satisfactory performances in wavelength range of 450 to 900 nm as a focusing element in an imaging spectrometer. Furthermore, the collimator lens of the imaging spectrometer is designed through the third-order aberration correction by using an iterative process.

  • PDF

Research to Minimize Endoscope and Objective-lens Sensitivity Using Multi-configurations (다중 구성을 이용한 내시경 및 대물렌즈 광학계 공차 민감도 최소화 설계 기술)

  • Jung, Mee-Suk
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.6
    • /
    • pp.259-265
    • /
    • 2021
  • Recently, lens manufacturing and assembly technology has greatly improved. However, tight requirements of manufacturing and assembly lead to an increase in cost and manufacturing time, and in some cases the performance of an optical system may deteriorate depending on the operating environment's conditions, such as temperature or vibration. In addition, the use of a compensator is an effective method to reduce sensitivity in an ultra-precision optical system, but in the case of a small lens, such as that in an endoscope, it is difficult to use a compensator due to the size limitation of the lens barrel. Therefore, minimizing lens sensitivity is the most important technology in lens design. For this reason, there have been various attempts to reduce the lens sensitivity, and there is a trend to add functions to reduce the sensitivity in the lens design S/W. In this paper, we introduce a design technology that minimizes lens sensitivity. We first design a lens with quite good performance, then analyze the sensitivity of this lens, make a multi-configuration with high-sensitivity element error, and then reoptimize it. We prove with an example that this design technique is very effective.

Tolerance Analysis and Design Improvement of a Lens System for Mobile Phone Camera (휴대폰용 카메라 모듈의 렌즈 시스템에 대한 공차 해석 및 설계 개선에 관한 연구)

  • Jung, Sang-Jin;Choi, Byung-Lyul;Choi, Dong-Hoon;Kim, Ju-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1063-1068
    • /
    • 2008
  • A lens system of a camera module for mobile phones is comprised of the composition and design of various shapes of lens. To improve responses such as the modular transfer function (MTF), a lens system should always be constructed by considering uncertainty that can be caused by manufacturing and assembly error. In this study, tolerance optimization using the Latin Hypercube Sampling (LHS) technique is performed. In order to reduce the computational burden of the tolerance optimization process and decrease the influence from numerical noise effectively, we use the Progressive Quadratic Response Surface Modeling (PQRSM), which is one of Sequential Approximate Optimization (SAO) techniques. Using this method, we achieved optimal tolerance for each lens and obtained reliability for satisfying user‘s requirements. In addition, through the design process the manufacturing and assembly cost of a lens system was reduced.

  • PDF

Design and Analysis of an Objective Lens for a Scanning Electron Microscope by Coupling FE Analysis and Ray Tracing (유한요소해석과 광선추적을 연계한 주사전자 현미경 대물렌즈의 설계 및 해석)

  • Park, Keun;Lee, Jae-Jin;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.11
    • /
    • pp.92-98
    • /
    • 2009
  • The scanning electron microscope (SEM) contains an electron optical system in which electrons are emitted and moved to form a focused beam, and generates secondary electrons from the specimen surfaces, eventually making an image. The electron optical system usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present study covers the design and analysis of an objective lens for a thermionic SEM. A finite element (FE) analysis for the objective lens is performed to analyze its magnetic characteristics for various lens designs. Relevant beam trajectories are also investigated by tracing the ray path of the electron beams under the magnetic fields inside the objective lens.

Optical Design and Fabrication of a Large Telephoto Zoom Lens with Fixed f/2.8 and Light Autofocus Lens

  • Ryu, Jae Myung;Gang, Geon Mo;Lee, Hyuck Ki;Lee, Ki Woo;Heu, Min;Jo, Jae Heung
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.629-637
    • /
    • 2015
  • Compact system cameras (CSCs) are commonly used nowadays and feature enhanced video functions and thin yet light interchangeable lenses. They differ from digital single-lens reflex (DSLR) cameras in their lack of mirror boxes. CSCs, however, have autofocus (AF) speeds lower than those of conventional DSLRs, requiring weight reduction of their AF groups. To ensure the marketability of large telephoto zoom lenses with fixed f/2.8 regardless of field angle variation, in particular, light weight AF groups are essential. In this paper, we introduce a paraxial optical design method and present a new, large, telephoto zoom lens with f/2.8 regardless of the field angle variation, plus a lightweight AF group consisting of only one lens. Using the basic paraxial optical design and optimization methods, we fabricated a new and lighter zoom lens system, including a single-lens, lightweight AF group with almost the same performance.

Optimization of Optics Design for 3D Laser Scanner (3차원 부품 레이저 용접용 스캐너 광학 최적설계)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.96-101
    • /
    • 2020
  • In this paper, we present the results of our research to perform 3D laser scanning functions by adding a focusing lens to a conventional 2D laser scanner. For the optical design, the ray-tracing technique was used along with a total of four lenses as the variable incident focusing lens, the collimating lens, and the F-Theta lens. As design variables, the curvature of the incident focusing lens (Lens #1) was assumed to be us, l mm and sumed mm, and the incident angles were set at 0cidenus, l. In addition, the distance between the focusing lens and the collimating lens was set to vary from 5 mm to 15 mm. When the incident focal length was varied from 5 mm to 15 mm, the exit focal length was calculated to vary from 67.5 mm to 56.8 mm for the lens with R = 100 mm and from 108.5 mm to 99.0 mm for the lens with R = 150 mm. When the incident angle was 0°, the focal aberration was only slightly observable at 10㎛ in both the x- and y-direction. At 7.5° was the focal aberration of approximately 20~50㎛ was measured at 20㎛. To investigate the chromatic aberration of the designed optical device, the distortion of the focus was observed when the 550 nm beam was simulated on lens designed for a 980 nm wavelength.

Generalized lens group conversion to their equivalent lenses (렌즈군의 일반화된 등가렌즈 변환)

  • 이종웅;박성찬
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.4
    • /
    • pp.251-257
    • /
    • 1998
  • The equivalent lens conversion is extended to lens group conversion, and the more generalized conversion method is developed. The new conversion method can be used for hte direct thick-to-thick lens conversion. By using the equivalent lens conversion, a thin lens system can be converted into various thick lens system which have different axial thicknesses, but those converted lens systems have identical paraxial property and similar aberration characteristic. For an example, the equivalent lens conversion technique is applied to modification of a thelephoto lens design. The axial thicknesses of the front group elements of the system are reduced to 75% of their original values. The modified design by using the equivalent lens conversion has same focal length with original, and it has smaller aberration changes than the other design of which axial thicknesses are changed only.

  • PDF