• Title/Summary/Keyword: Length of branch line

Search Result 43, Processing Time 0.031 seconds

The effect of hooking on thickness and length of branch line in fishing gear of long line at the coastal waters (연안 연승어구에 있어서 아릿줄의 굵기와 길이가 조획에 미치는 영향)

  • Yang, Chin-Sung;Kim, Suk-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.48 no.1
    • /
    • pp.51-58
    • /
    • 2012
  • As a basic study to improve hooking ability of long line fishing gear, which is widely used around Jeju-do coast, the researcher performed hooking experiment of parrot fish by manufacturing and installing 7 kinds of model long line fishing gears, whose thickness of branch line are different and 8 kinds of model long line fishing gear, whose length of branch line are different, in indoor circular aquarium, which is installed for the model experiment of thickness and length of branch line that are various by fishing implement and improper. The hooking rate depending on thickness and length of branch line was calculated and the effect of thickness and length of branch line on hooking rate was analyzed. Its results are as follows. When branch line was thin and long, high hooking rate appeared. In the scope of value setting, the relationship between thickness ($B_t$) of branch line and total hooking rate ($Th_r$) can be shown as following formula as. In the scope of value setting, the relationship between length ($B_t$) of branch line and total hooking rate ($B_t$) can be shown as $Th_r=-20.83B_t+26.04$. Through Pearson correlation analysis, the coefficient of correlation between thickness of branch line and hooking rate was -0.718. Therefore it showed significance in 0.01 significance level. Through Pearson correlation analysis, the coefficient of correlation between length of branch line and hooking rate was 0.431. Therefore it showed significance in 0.01 significance level.

Design of an extremely miniaturized branch-line coupler

  • Kang, In Ho;Li, Xi Qiang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.995-999
    • /
    • 2014
  • In this paper, a new size-reduction approach for branch-line coupler is introduced which uses parallel end-shorted coupled lines with lumped capacitors. The characteristic of the new design was analyzed using even-odd mode method, and simulated on HFSS before fabricated on the FR4 epoxy glass cloth copper-clad plat (CCL) PCB substrate at center frequency of 1 GHz. The electrical length of transmission line was reduced to 15 degrees, therefore the size of branch-line coupler was largely reduced approximately maintaining the same characteristic around the stable center frequency. The insertion loss of the branch-line coupler filter was -4.39 dB. The size of the overall hybrid is $20mm{\times}20mm$. Measurements results were well agreed with the simulated ones.

Analysis of Propagation Characteristics of Lightning Surge according to the Type of Branch Line in Distribution System (배전계통에서 분기선로 형태에 따른 뇌서지 전달특성 해석)

  • Seo, Hun-Chul;Han, Jun;Kim, Yun-Gon;Kim, Chul-Hwan;Choi, Sun-Kyu;Lee, Byung-Sung;Rhee, Sang-Bong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.10
    • /
    • pp.1376-1382
    • /
    • 2013
  • This paper analyzes the propagation characteristics of lightning surge according to the type of branch line in distribution system. The types of branch line considered are H-type and PI-type. At each type, the length of main feeder is same, while the number and length of branch line are different. The distribution line is modeled and the various lightning locations are simulated by Electromagnetic Transient Program(EMTP). For each lightning, the various measuring points are selected. Based on the simulation results, the propagation characteristics of lightning surge at each measuring point are analyzed. The analyzed results are verified by travelling wave theory.

Stubbed Branch-Line Compact Balun (스터브를 이용한 소형화된 분기선로 발룬)

  • Park, Myun-Joo;Lee, Byung-Je
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.107-112
    • /
    • 2007
  • A new impedance transforming balun scheme is presented based on the branch-line structure with stubs on the vertical branches. The stubbed vertical branch eliminates the unwanted even mode output and provides only the balanced output of the balun with opposite phase. Also, the use of stubs reduces the branch lengths by two times the stub length, which is useful for the compact balun design.

  • PDF

Numerical Analysis Study of the Mixing Mechanism of Non-element Mixer (논 엘레멘트 믹서의 혼합 메커니즘에 관한 수치해석적 검토)

  • You, Sun Ho
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Visualization of the mixing pattern in a non-element mixer was carried out using laser induced fluorescence(LIF) to evaluate characteristics of mixer consisting of the main flow pipe and branch flow pipes. The branch flows were injected periodically with the period $T_{in}$ normal to the main flow, and rhodamine B was mixed into the most upstream branch flow to visualize mixing pattern in the main flow pipe by LIF. The length of boundary line L of the LIF image was measured. In this study, a numerical analysis was performed to identify the mixing process of the non-element mixer, and the results were compared with experimental results. Each result was almost the same. When the number of branch flows is increased, the mixing pattern became complicated and was supposed to become chaotic. The length of boundary line L increased exponentially with an increase in the number of branch flows.

A Branch-Line Hybrid Using Triangle-Patch Type Artificial Transmission Line (삼각 패치형 인공 전송 선로를 이용한 브랜치 라인 하이브리드)

  • Oh, Song-Yi;Hwang, Hee-Yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.7
    • /
    • pp.768-773
    • /
    • 2012
  • A branch-line hybrid using microstrip artificial transmission lines(ATLs) with slotted-triangular patches is proposed. The proposed artificial transmission line is compact in structure as well as easy to adjust the characteristic impedance and electrical length of equivalent transmission line by changing the slot's parameters; hence, it is useful for miniaturizing conventional transmission lines. The designed branch-line hybrid, because of the use of the right angled isosceles triangular shaped artificial transmission lines as building blocks, has no useless empty space, and hence optimally miniaturized. A fabricated 3 dB branch-line hybrid shows the coupling variation of ${\pm}0.5$ dB and the phase difference between two output ports of $91^{\circ}{\pm}4^{\circ}$ within 15 % bandwidth at 2.45 GHz center frequency. The size of proposed branch-line hybrid is only 38% of the conventional branch-line hybrid.

Equivalent Transmission-Line Sections for Very High Impedances and Their Application to Branch-Line Hybrids with Very Weak Coupling Power

  • Ahn, Hee-Ran;Kim, Bum-Man
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.2
    • /
    • pp.85-97
    • /
    • 2009
  • As operating frequency is raised and as more integration with active and passive elements is required, it becomes difficult to fabricate more than 120 ${\Omega}$ characteristic impedance of a mierostrip line. To solve this problem, an equivalent high impedance transmission-line section is suggested, which consists mainly of a pair of coupled-line sections with two shorts. However, it becomes a transmission-line section only when its electrical length is fixed and its coupling power is more than half. To have transmission-line characteristics(perfect matching), independently of coupling power and electrical length, two identical open stubs are added and conventional design equations of evenand odd-mode impedances are modified, based on the fact that the modified design equations have the linear combinations of conventional ones. The high impedance transmission-line section is a passive component and therefore should be perfectly matched, at least at a design center frequency. For this, two different solutions are derived for the added open stub and two types of high impedance transmission-line sections with 160 ${\Omega}$ characteristic impedance are simulated as the electrical lengths of the coupled-line sections are varied. The simulation results show that the determination of the available bandwidth location depends on which solution is chosen. As an application, branch-line hybrids with very weak coupling power are investigated, depending on where an isolated port is located, and two types of branch-line hybrids are derived for each case. To verify the derived branch-line hybrids, a microstrip branch-line hybrid with -15 dB coupling power, composed of two 90$^{\circ}$ and two 270$^{\circ}$ transmission-line sections, is fabricated on a substrate of ${\varepsilon}_r$= 3.4 and h=0.76 mm and measured. In this case, 276.7 ${\Omega}$ characteristic impedance is fabricated using the suggested high impedance transmission-line sections. The measured coupling power is -14.5 dB, isolation and matching is almost perfect at a design center frequency of 2 GHz, showing good agreement with the prediction.

Dual-Band Branch-Line Coupler Using Shorted Stubs (단락 스터브를 이용한 이중대역용 브랜치 라인 커플러의 설계)

  • Kim, Jong-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.2
    • /
    • pp.54-59
    • /
    • 2013
  • This letter presents a shorted-stub tapped branch-line coupler for dual-band applications. In the new design, a shorted stub is used to realize 90 phase change at two frequencies. Closed-form design equations are derived to find the characteristic impedance and electrical length of the proposed branch lines using the ABCD-matrix. To verify the design concept, a microstrip coupler operating at 0.8 and 1.85 GHz is fabricated and measured.

Relation between crown-length, tree-height, diameter Clear-bale length and the longest branch length in a Pinus densiflora stand (적송림(赤松林)에 있어서의 성장인자간(成長因子間)의 상관(相關))

  • Yim, Kyong Bin;Pack, Myong Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 1966
  • Taking an opportunity of the application of clearcutting method, 140 red pine (Pinus densiflora Sieb. et Zucc.) trees grown at Chon-nam province, the southern part of South Korea, were fellen and the tree height, clear-bole length, D.B.H. diameter at base(0.2m above from the ground line) and the length of the longest branch were measured. The correlation between factors mentioned were analysed. The results are summarized as follows: 1. The correlation between crown length and tree height (r=0.821) was sinificant. 2. The correlation between the diameter at base and D.B.H. was highly significant (r=0.961). D.B.H. can be calculated from multiplying the diameter at base by 0.88. 3. A weak relation between D.B.H and tree height was abserved. 4. The positive correlation between tree height and clear-bole-length was calculated, but it was not sharp between D.B.H. and the length of the longest branch. 5. The height, basal area, D.B.H. and volume increment by tree class calculated from the data of the stem analysis are presented (Tab. 3~10).

  • PDF

Discharge Variation of Perforated Hoses and Drip Irrigation Systems for Protected Cultivation (시설재배용 분수호스 및 점적관수 시스템의 관수균일도 분석)

  • Nam, Sang-Woon;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.16 no.4
    • /
    • pp.297-302
    • /
    • 2007
  • Discharge variations of perforated hose and drip irrigation systems were examined to evaluate irrigation uniformity at different pressures and length of branch line. Evaluation using statistical uniformity indicated that button drippers performed at excellent level but drip tapes and drip hoses were a little lower level. Nominal discharge of drip irrigation systems showed at the high side within the range of regulating pressure provided by the manufacturer. It is desirable that the length of branch line for drip hose, drip tape, and button dripper should be limited to 50 m, 70 m, and 100 m, respectively. Irrigation uniformity of perforated hoses showed very low level. So it is recommended that the length of branch line for perforated hoses should be limited to $30{\sim}35m$.