• Title/Summary/Keyword: Length frequency data

Search Result 618, Processing Time 0.022 seconds

Throughput of Coded DS CDMA/Unslotted ALOHA Networks with Variable Length Data Traffic and Two User Classes in Rayleigh Fading FSMC Model

  • Tseng, Shu-Ming;Chiang, Li-Hsin;Wang, Yung-Chung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4324-4342
    • /
    • 2014
  • Previous papers analyzed the throughput performance of the CDMA ALOHA system in Rayleigh fading channel, but they assume that the channel coefficient of Rayleigh fading was the same in the whole packet, which is not realistic. We recently proposed the finite-state Markov channel (FSMC) model to the throughput analysis of DS uncoded CDMA/unslotted ALOHA networks for fixed length data traffic in the mobile environment. We now propose the FSMC model to the throughput analysis of coded DS CDMA/unslotted ALOHA networks with variable length data traffic and one or two user classes in the mobile environment. The proposed DS CDMA/unslotted ALOHA wireless networks for two user classes with access control can maintain maximum throughput for the high priority user class under high message arrival per packet duration.

The change of spray characteristics on hydraulic acoustic wave influence and prediction of low combustion instability (수력파동에 의한 분무변화 및 저주파 연소불안정에의 영향 예측)

  • Kim, Tae-Kyun;Lee, Sang-Seung;Yoon, Woong-Sup
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.152-160
    • /
    • 2004
  • Studies to investigate the influence on hydraulic acoustic wave were conducted using pressure swirl atomizer under making frequency range from 0 to 60Hz using water as a propellant. Pressure oscillation from hydraulic sources gives a strong influences on atomization and mixing processes. The ability to drive these low frequency pressure oscillations makes spray characteristics changeable. The effect of pressure perturbation and its spray characteristics showed that low injector pressure with pressure pulsation gives more significantly than high injector pressure with pressure perturbation in SMD, spray cone angle, breakup length. Moreover, this data could be used for prediction of low combustion instability getting G factor.

  • PDF

FORECASTING OF FINANCIAL TIME SERIES BY A DIGITAL FILTER AND A NEURAL NETWORK

  • Saito, Susumu;Kanda, Shintaro
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.10a
    • /
    • pp.313-317
    • /
    • 2001
  • The approach to predict time series without neglecting the fluctuation in a short period is tried by using a digital FIR filter and a neural network. The differential waveform of the Nikkei average closing price is filtered by the FIR band-pass filter of 101 length. It is filtered into the five frequency bands of 0-1Hz, 1-2Hz, 2-3Hz, 3-4Hz and 4-5Hz by setting the sampling frequency 10Hz. The each filtered waveform is learned and forecasted by the neural network. The neural network of the back propagation method is adopted in the learning the waveform. By inputting the data of 20 days in the past, the prediction of 10 days ahead is carried out. After learning the time series of each frequency band by the neural network, the predicted data far each frequency band are obtained. The predicted waveforms of each frequency band are synthesized to obtain a final forecast. The waveform can be forecasted well as a whole.

  • PDF

Sparse Channel Estimation Based on Combined Measurements in OFDM Systems (OFDM 시스템에서 측정 벡터 결합을 이용한 채널 추정 방법)

  • Min, Byeongcheon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • We investigate compressive sensing techniques to estimate sparse channel in Orthogonal Frequency Division Multiplexing(OFDM) systems. In the case of large channel delay spread, compressive sensing may not be applicable because it is affected by length of measurement vectors. In this paper, we increase length of measurement vector adding pilot information to OFDM data block. The increased measurement vector improves probability of finding path delay set and Mean Squared Error(MSE) performance. Simulation results show that signal recovery performance of a proposed scheme is better than conventional schemes.

A Horn of Half-Wave Design for Ultrasonic Metal Welding (초음파 금속 용착용 반파장 혼의 설계)

  • Jang, Ho-Su;Park, Woo-Yeol;Park, Dong-Sam
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.1
    • /
    • pp.76-81
    • /
    • 2012
  • Ultrasonic metal welding is one of the welding methods which welds metal by applying high frequency vibrational energy into specific area at constant pressure, avaliable in room temperature and low temperature. Ultrasonic metal welder is consisted of power supply, transducer, booster, and horn. Precise designing is required since each parts' shape, length and mass can affect driving frequency and vibration mode. This paper focused to horn design, its length L was set to 62mm by calculating vibration equation. By performing modal analysis with various shape variable b times integer, when length of b is 30mm the output was 39,599Hz at 10th mode. Also by performing harmonic response analysis, the frequency response result was 39,533Hz, which was similar to modal analysis result. In order to observe the designed horn's performance, about 4,000 voltage data was obtained from a light sensor and was analyzed by FFT analysis using Origin Tool. The result RMS amplitude was approximately 8.5${\mu}m$ at 40,000Hz, and maximum amplitude was 12.3${\mu}m$. Therefore, it was verified that the ultrasonic metal welding horn was optimally designed.

The effect of lactation number, stage, length, and milking frequency on milk yield in Korean Holstein dairy cows using automatic milking system

  • Vijayakumar, Mayakrishnan;Park, Ji Hoo;Ki, Kwang Seok;Lim, Dong Hyun;Kim, Sang Bum;Park, Seong Min;Jeong, Ha Yeon;Park, Beom Young;Kim, Tae Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1093-1098
    • /
    • 2017
  • Objective: The aim of the current study was to describe the relationship between milk yield and lactation number, stage, length and milking frequency in Korean Holstein dairy cows using an automatic milking system (AMS). Methods: The original data set consisted of observations from April to October 2016 of 780 Holstein cows, with a total of 10,751 milkings. Each time a cow was milked by an AMS during the 24 h, the AMS management system recorded identification numbers of the AMS unit, the cow being milking, date and time of the milking, and milk yield (kg) as measured by the milk meters installed on each AMS unit, date and time of the lactation, lactation stage, milking frequency (NoM). Lactation stage is defined as the number of days milking per cows per lactation. Milk yield was calculated per udder quarter in the AMS and was added to 1 record per cow and trait for each milking. Milking frequency was measured the number of milkings per cow per 24 hour. Results: From the study results, a significant relationship was found between the milk yield and lactation number (p<0.001), with the maximum milk yield occurring in the third lactation cows. We recorded the highest milk yield, in a greater lactation length period of early stage (55 to 90 days) at a $4{\times}$ milking frequency/d, and the lowest milk yield was observed in the later stage (>201 days) of cows. Also, milking frequency had a significant influence on milk yield (p<0.001) in Korean Holstein cows using AMS. Conclusion: Detailed knowledge of these factors such as lactation number, stage, length, and milking frequency associated with increasing milk yield using AMS will help guide future recommendations to producers for maximizing milk yield in Korean Dairy industries.

Design Optimization of Intake Muffler for Fuel Cell Electric Vehicle APU (연료전지 자동차의 공기 공급계용 흡기 소음기의 최적 설계)

  • Kim, Eui-Youl;Lee, Young-Joon;Lee, Sang-Kwon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.44-52
    • /
    • 2012
  • Fuel cell electric vehicles have some noise problems due to its air processing unit which is required to feed the ambient air into the fuel cell stack. Discrete-frequency noises are radiated from a centrifugal blower due to rotor-stator interaction. Their fundamental frequency is the blade passing frequency, which is determined by the number of rotor blades and their rotating speed. To reduce such noises, multi-chamber perforated muffler has been designed. In this paper, in order to improve the transmission loss of a perforated muffler, the relationship between the impedance model of a perforated hole and its noise reduction performance is studied, and the applicability of a short-length perforated muffler to air processing unit of fuel cell system is described using acoustic simulation results and experimental data. The acoustic velocity vector across the neck of a perforated hole is very important design factor to optimize the transmission of an intake muffler. The suggested short-length perforated muffler is effective on discrete-frequency noises while keeping the volume of intake muffler minimized.

Desing and Analysis of Weather/Wave Observation Network for the Coastal Zone (연안해역의 기상${\cdot}$파랑관측망 설계 및 해석기술의 구축 - 해양파랑관측자료의 해석방법 -)

  • Ryu Cheong-Ro;KIM Hee-Joon;SHON Byung-Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.1
    • /
    • pp.16-30
    • /
    • 1997
  • Application of digital filter to the wave analysis is studied using the observed data by wave gauge. Sea wave data obtained from wave gauge always include long wave frequency components. In order to estimate the sea wave parameters, we must re-analyzed wave data by using a digital filter and the concept of mean sea level correction method. By the wave by wave analysis and spectral methods, sea wave parameters on the basis of wave data obtained by the conventional method and digital filter are compared. The best-fitted design filter determined by the necessary conditions of frequency responses, can be obtained by calculating various transfer functions. Thus, to get the best the digital filter design, both Butterworth filter and Savitzky-Golay filter of digital filter are used in the frequency and time domain, respectively. Three cases of observation wave data are calculated by applying digital filter. The components of different frequency bands in the surf zone are coexisted in three cases. The wave data for wind wave components is computed using the digital filter the surf zone and off-surf zone, and based on the filtered data, wave parameters are calculated by the spectral analysis and wave by wave analysis methods, respectively. As a results, when sea wave data observed by wave gauge are analyzed, the Savitzky-Golay method is recommended which can well appear cut-off frequency by experimental choosing filter length in the time domain. The better mean sea level correction method is the Butterworth filter in the frequency domain.

  • PDF

Performance Analysis of Audio Data Hiding Method based on Phase Information with Various Window Length (주파수 변환의 길이에 따른 위상 기반 오디오 정보 은닉 기술의 음질 및 성능 분석)

  • Cho, Kiho;Kim, Nam Soo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.232-237
    • /
    • 2013
  • The role of the window length of time-frequency transformation is important for the audio data hiding methods utilizing phase information. In this paper, the experiments for our audio data hiding method were conducted in order to evaluate the audio quality and robustness against reverberant environment. The experimental results showed the tendency that the worse audio quality but better robustness were obtained when the lengthy window was applied. The important reason for quality degradation was pre-echo which flatters the percussive sound. The results also indicated that the wireless communication theory related to the length of time-frequency transform can be applied in the field of audio data hiding and acoustic data transmission.

Design of Optimal Hop Length for Fixed Radio Relay Links above 20GHz in Korea (20GHz 이상 대역에서의 국내 고정 무선중계 시스템의 최적 경로길이 설계)

  • 이형수;김혁제;신동근
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.3
    • /
    • pp.263-271
    • /
    • 1996
  • The frequency band above 20GHz is the great radio resource which has not been used. But the attenuation by atmosphere is so large that the radio systems using this frequency band must have shorter hops. There are few studies of optimal hop length for these millimetric wave radio links in Korea. In this paper we analyzed the millimetric wave propagation characteristics in atmosphere and estimated rain attenuation which have a great effect on hop length. Furthermore, we present a rainfall rate(mm/h) of the cities including Seoul and Pusan using the data collected by several rainfall gauges. This paper presents a method of obtaining the optimum hop length for millimer wave radio links based on the rain rate date.

  • PDF