• Title/Summary/Keyword: Length adjustment

Search Result 230, Processing Time 0.034 seconds

Precise Prediction of Optical Performance for Near Infrared Instrument Using Adaptive Fitting Line

  • Ko, Kyeongyeon;Han, Jeong-Yeol;Nah, Jakyoung;Oh, Heeyoung;Yuk, In-Soo;Park, Chan;Chun, Moo-Young;Oh, Jae Sok;Kim, Kang-Min;Lee, Hanshin;Jeong, Ueejeong;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.307-314
    • /
    • 2013
  • Infrared optical systems are operated at low temperature and vacuum (LT-V) condition, whereas the assembly and alignment are performed at room temperature and non-vacuum (RT-NV) condition. The differences in temperature and pressure between assembly/alignment environments and operation environment change the physical characteristics of optical and opto-mechanical parts (e.g., thickness, height, length, curvature, and refractive index), and the resultant optical performance changes accordingly. In this study, using input relay optics (IO), among the components of the Immersion GRating INfrared Spectrograph (IGRINS) which is an infrared spectrograph, a simulation based on the physical information of this optical system and an actual experiment were performed; and optical performances in the RT-NV, RT-V, and LT-V environments were predicted with an accuracy of $0.014{\pm}0.007{\lambda}$ rms WFE, by developing an adaptive fitting line. The developed adaptive fitting line can quantitatively control assembly and alignment processes below ${\lambda}/70$ rms WFE. Therefore, it is expected that the subsequent processes of assembly, alignment, and performance analysis could not be repeated.

Transmission Rate Priority-based Traffic Control for Contents Streaming in Wireless Sensor Networks (무선 센서 네트워크에서 콘텐츠 스트리밍을 위한 전송율 우선순위 기반 트래픽제어)

  • Lee, Chong-Deuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3176-3183
    • /
    • 2011
  • Traffic and congestion control in the wireless sensor network is an important parameter that decides the throughput and QoS (Quality of Service). This paper proposes a transmission rate priority-based traffic control scheme to serve digital contents streaming in wireless sensor networks. In this paper, priority for transmission rate decides on the real-time traffic and non-real-time with burst time and length. This transmission rate-based priority creates low latency and high reliability so that traffic can be efficiently controlled when needed. Traffic control in this paper performs the service differentiation via traffic detection process, traffic notification process and traffic adjustment. The simulation results show that the proposed scheme achieves improved performance in delay rate, packet loss rate and throughput compared with those of other existing CCF and WCA.

Effectiveness and Complication Rate of Percutaneous Endoscopic Gastrostomy Placement in Pediatric Oncology Patients

  • Kidder, Molly;Phen, Claudia;Brown, Jerry;Kimsey, Kathryn;Oshrine, Benjamin;Ghazarian, Sharon;Mateus, Jazmine;Amankwah, Ernest;Wilsey, Michael
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.24 no.6
    • /
    • pp.546-554
    • /
    • 2021
  • Purpose: Malnutrition is a significant issue for pediatric patients with cancer. We sought to evaluate the effectiveness and complication rate of percutaneous endoscopic gastrostomy (PEG) placement in pediatric oncology patients. Methods: A retrospective chart review was performed on 49 pediatric oncology patients undergoing PEG placement at Johns Hopkins All Children's Hospital between 2000 and 2016. Demographic and clinical characteristics, complications, absolute neutrophil count at time of PEG placement and at time of complications, length of stay, and mortality were identified. Weight-for-age Z-scores were evaluated at time of- and six months post-PEG placement. Results: The overall mean weight-for-age Z-score improved by 0.73 (p<0.0001) from pre- (-1.11) to post- (-0.38) PEG placement. Improvement in Z-score was seen in patients who were malnourished at time of PEG placement (1.14, p<0.0001), but not in those who were not malnourished (0.32, p=0.197). Site infections were seen in 12 (24%), buried bumper syndrome in five (10%), and tube dislodgement in one (2%) patient. One patient (2%) with fever was treated for possible peritonitis. There were no cases of other major complications, including gastric perforation, gastrocolic fistula, clinically significant bleeding, or PEG-related death documented. Conclusion: Consistent with previous studies, our data suggests a relationship between site complications (superficial wound infection, buried bumper syndrome) and neutropenia. Additionally, PEG placement appears to be an effective modality for improving nutritional status in malnourished pediatric oncology patients. However, larger prospective studies with appropriate controls and adjustment for potential confounders are warranted to confirm these findings.

The Comparison of Pattern Method Function between Apparel CAD Systems - Focusing on Skirt Waistband and Sleeve Armhole line Generation Process - (어패럴 패턴캐드 간 패턴 제도 기능 비교 - 스커트 곡선 허리밴드와 소매 진동곡선 생성 과정을 중심으로 -)

  • Kim, Na Rae;Han, Hyun Sook
    • Fashion & Textile Research Journal
    • /
    • v.20 no.6
    • /
    • pp.690-703
    • /
    • 2018
  • The purpose of this study is to help user understand the basic principles and interfaces of each program, and to provide a base material for the development of more efficient apparel CAD systems to compensate for each program's shortcomings by comparing the function of three apparel CAD systems: Yuka CAD, Opti-tex, and Style CAD. For this purpose, the skirt waistband and sleeve armhole line creation process were selected based on these two criteria. 1) There is a big difference between principle and method between CAD systems. 2) When CAD system is used rather than paper drawing process, the process is shortened and convenience is high. In this study, pros and cons and supplement point of each CAD system are suggested by comparing the functions of the CAD system performing the selected drafting process by four criteria: icon, key, method, and characteristic point. As a result of the study, it was confirmed that the three CAD systems differ in the basic principle and interface environment. As a result of analyzing the skirt waistband method function, it was confirmed that the band line is formed directly on the outline of the skirt and the band dart recognition function is the most efficient function and as a result of the analyzing the sleeve armhole line method function, it was confirmed that the curve generation function using the shape of the actual curve measure and the length adjustment function through the automation of the dimension calculation is the most efficient function.

A Study on the Modal Parameters for Cable System of Bridge (교량 케이블시스템의 모드변수에 관한 연구)

  • Lee, Hyunchol;Jo, Yeong-hoon;Kim, Jinsoo;Park, Kyoungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.48-59
    • /
    • 2019
  • In recent years, the type of bridge where cables such as suspension bridge and cable-stayed bridge are the main factors in the construction of long-range bridges has been soaring. The effects of cables on these structures are very large, and for structural analysis, it is necessary to study the cable and the structural changes according to the mode characteristics of the cables. In particular, cables are directly connected to camber adjustment, which conveys load effects on girders to tower, and are important components in the overall structure, and since the initial tension on the construction is compared with the tension over time, this study was conducted to help identify the condition of the bridge's aging and abnormalities. Therefore, in this study, the characteristics of the mode from the mode analysis through the impact hammer to the mass of the cable and the change in the length of the cable are analyzed.

A Study on Design Trends of Tailored Jacket in Contemporary Women's Collection -Focused on Constructive Elements of Jacket- (현대 여성복 컬렉션에 나타난 테일러드 재킷의 디자인 경향에 관한 연구 -재킷의 구성 요소를 중심으로-)

  • Kim, Kyung-A
    • Fashion & Textile Research Journal
    • /
    • v.21 no.5
    • /
    • pp.552-563
    • /
    • 2019
  • Jackets are regarded as an element used to judge ideas and fashion trends for the age in which they are presented. This article analyzed recent tailored jacket fashion trends by categorizing jackets according to design elements. For this, design elements of tailored jackets were categorized into silhouette, collar and lapel, shoulder and sleeve, and decorative elements. We collected and categorized the changes of 491 jackets that have appeared in collections over the past 5 years. The results showed shoulder and sleeve changes (36.25%), silhouette changes (33.4%), lapel and color changes (12.6%), decorative element changes (11.2%), and no changes (6.5%). Jacket forms with changed shoulders and sleeves appeared as styles that have laterally or vertically expanded the shoulder and arm hole with the production of various sleeve forms. Silhouette changes were expressed through forms such as exaggerated silhouettes of oversized-clothing, silhouettes made through cutting or layering, and the polarization of length. Forms with a changed collar and lapel appeared with polarization trends in which lapels dramatically grow larger or narrower, diverse frontal adjustments using no-collar designs, and the utilization of shawl-collars; in addition, forms with changed decorative elements were expressed with layered decorations such as pockets or collar add-ons, adjustment changes using buttons, ribbons or zippers, and various trimmings. The analysis results show that modern female tailored jackets are being made to realize an exaggerated physical beauty of shoulder, sleeve and torsos to maximize decorative effects through new attempts in design.

Temperature ranges for survival and growth of juvenile Saccharina sculpera (Laminariales, Phaeophyta) and applications for field cultivation

  • Kim, Soo Hong;Kim, Young Dae;Hwang, Mi Sook;Hwang, Eun Kyoung;Yoo, Hyun Il
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.231-240
    • /
    • 2021
  • Saccharina sculpera is highly valued for human consumption and value-added products. However, natural resources of this kelp have decreased sharply and it is in danger of extinction. Resources recovery through cultivation is being trialed to enable the sustainable use of this species. In this study, the temperature range for survival and optimal growth of juvenile S. sculpera was identified and applied to field cultivation. This study investigated the survival and growth of juvenile S. sculpera under six temperatures (i.e., 5, 10, 15, 16, 18, and 20℃) and two light intensities (i.e., 20 and 40 µmol photons m-2 s-1) in an indoor culture experiment. In these experiments, the blade length decreased at 16℃ under the both light intensities. The thalli died at 20℃ and 20 µmol photons m-2 s-1, and at 18-20℃ and 40 µmol photons m-2 s-1. During the field cultivation, early growth of S. sculpera was highest at the 5 m depth and growth decreased as the water depth increased. When the initial rearing depth was maintained without adjustment throughout the cultivation period (from December to October), all the cultivated S. sculpera plants died during August and September. However, S. sculpera plants lowered from 5 to 15 m and grew to 90.8 ± 13.1 cm in July. The seawater temperature at 15 m depth was similar to the upper level of thermal tolerance demonstrated by juvenile S. sculpera in the indoor culture experiments (16℃ or lower). The plants were subsequently lowered to 25 m depth in August, which eventually led to their maturation in October. The present study confirmed that improved growth rates and a delay in biomass loss can be achieved by adjusting the depth at which the seaweeds are grown during the cultivation period. These results will contribute to the establishment of sustainable cultivation systems for S. sculpera.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Determination of Optimal Locations for Measuring Displacements to Adjust Cable Tension Forces of Cable-Stayed Bridges (사장교 시공 중 케이블 장력 보정을 위한 최적 변위계측 위치 결정)

  • Shin, Soobong;Lee, Jung-Yong;Kim, Jae-Cheon;Jung, Kil-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.129-136
    • /
    • 2009
  • The paper presents an algorithm of selecting optimal locations for measuring displacements(OLD) to adjust cable tension forces during the construction of cable-stayed bridges. The rank for optimal locations can be determined from the effective independence distribution vectors(EIDV) that are computed from the Fisher Information Matrices(FIM) formulated with the displacement sensitivities. To examine the efficiency and reliability of the proposed algorithm for determining OLD, a simulation study on a cable-stayed bridge has been carried out. The results using FIM formulated with displacements are compared with those using FIM with displacement sensitivities through the simulation study. The effects of measurement noise and error in cable length on the adjustment of cable tension forces are evaluated statistically by applying the Monte Carlo scheme.

The Value of Computed Tomography Scan in Three-dimensional Planning and Intraoperative Navigation in Primary Total Hip Arthroplasty

  • Fabio Mancino;Andreas Fontalis;Ahmed Magan;Ricci Plastow;Fares S. Haddad
    • Hip & pelvis
    • /
    • v.36 no.1
    • /
    • pp.26-36
    • /
    • 2024
  • Total hip arthroplasty (THA) is a frequently performed procedure; the objective is restoration of native hip biomechanics and achieving functional range of motion (ROM) through precise positioning of the prosthetic components. Advanced three-dimensional (3D) imaging and computed tomography (CT)-based navigation are valuable tools in both the preoperative planning and intraoperative execution. The aim of this study is to provide a thorough overview on the applications of CT scans in both the preoperative and intraoperative settings of primary THA. Preoperative planning using CT-based 3D imaging enables greater accuracy in prediction of implant sizes, leading to enhancement of surgical workflow with optimization of implant inventory. Surgeons can perform a more thorough assessment of posterior and anterior acetabular wall coverage, acetabular osteophytes, anatomical landmarks, and thus achieve more functional implant positioning. Intraoperative CT-based navigation can facilitate precise execution of the preoperative plan, to attain optimal positioning of the prosthetic components to avoid impingement. Medial reaming can be minimized preserving native bone stock, which can enable restoration of femoral, acetabular, and combined offsets. In addition, it is associated with greater accuracy in leg length adjustment, a critical factor in patients' postoperative satisfaction. Despite the higher costs and radiation exposure, which currently limits its widespread adoption, it offers many benefits, and the increasing interest in robotic surgery has facilitated its integration into routine practice. Conducting additional research on ultra-low-dose CT scans and examining the potential for translation of 3D imaging into improved clinical outcomes will be necessary to warrant its expanded application.