• Title/Summary/Keyword: Legume Hay

Search Result 16, Processing Time 0.021 seconds

Forage Quality Management of Kura Clover in Binary Mixtures with Kentucky Bluegrass, Orchardgrass, or Smooth Bromegrass

  • Kim, B.W.;Albrecht, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.344-350
    • /
    • 2011
  • Kura clover (Trifolium ambiguum M. Bieb.) is a potentially useful perennial legume because of its excellent nutritive value and persistence under environmental extremes. However, information about forage quality of kura clover - grass mixtures adapted to the North-Central USA is limited. Objectives of this research were to determine forage nutritional value of kura clover-grass mixtures under different harvest frequency and cutting height regimes. 'Rhizo' kura clover was grown alone and in binary mixtures with 'Park' Kentucky bluegrass (Poa pratensis L.), 'Comet' orchardgrass (Dactylis glomerata L.), and 'Badger' smooth bromegrass (Bromus inermis Leyss.) at the Arlington Agricultural Research Station located near Madison, WI. Three harvest frequencies ($3{\times}$, $4{\times}$, or $5{\times}$ annually) and two cutting heights (4- or 10-cm) were imposed on each binary mixture and on kura clover grown alone. Higher nutritive value was observed in the binary mixtures with more frequent harvest and lower cutting height. Averaged over 3 years and all harvest frequency and cutting height treatments, the nutritive value of the Kentucky bluegrass and smooth bromegrass mixtures was superior to that of the orchardgrass mixture ($410\;g\;kg^{-1}$ NDF and $194\;g\;kg^{-1}$ CP in the Kentucky bluegrass mixture; $405\;g\;kg^{-1}$ NDF and $188\;g\;kg^{-1}$ CP in the smooth bromegrass mixture; $435\;g\;kg^{-1}$ NDF and $175\;g\;kg^{-1}$ CP in the orchardgrass mixture). All of the mixtures and harvest management systems evaluated in this study produced forage with quality equivalent to "grade one" alfalfa hay and suitable for highproducing livestock, even though the highest quality was observed in the Kentucky bluegrass mixture with $5{\times}$ harvesting at the shorter cutting height.

Yield and Quality of Forage Produced by Mixed Planting of Soybean and Corn (옥수수와 사료용 콩 혼작에 의한 조사료 수량 및 품질)

  • Seo, Jin-Dong;Chae, Jong-Hyun;Park, Ji-Ho;Kim, Min-Su;Kwon, Chan-Ho;Lee, Jeong-Dong
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.2
    • /
    • pp.105-109
    • /
    • 2014
  • The soybean [Glycine max (L.) Merr.], an edible legume, has a high protein content in both its hay and grain, so it is often used as a supplement for other forages that have a deficient protein concentration. Therefore, this study investigated the forage quality and yield in the case of mixed planting of soybean and corn. The forage yield and quality were assessed for three cropping patterns: soybean mono planting, corn mono planting, and mixed planting of soybean and corn. For planting, this study used a forage corn cultivar, Kwangpyeongok, and three recombinant inbreed lines, W2, W4, and W11, selected from Glycine soja (PI483463)${\times}$G. max (Hutcheson). The mixed planting of soybean and corn produced a higher forage yield than the corn mono cropping. The crude protein and crude fat content were also increased with the mixed planting of soybean and corn when compared with the corn mono cropping. Some decrease of ADF and NDF, and increase for RFV in mixed planting of soybean and corn than corn mono cropping. Therefore, the results show that mixed planting of soybean and corn is an effective cropping system to improve the forage quality.

Response of Nodulation and Leaf Nitrate Reductase Activity of Alfalfa to Exogeneous Nitrate Supply (질산태 질소 공급이 알팔파의 뿌리혹 형성 및 엽중 Nitrate Reductase 활성에 미치는 영향)

  • 이석하;황석중
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.2
    • /
    • pp.196-200
    • /
    • 1993
  • A full understanding of the interdependence of leaf nitrate (($No_3$ ̄) metabolism and symbiotic nitrogen($N_2$) fixation in legume crops is needed to help maximize the use of both N sources as well as to improve forage quality through the inhibition of leaf nitrate accumulation. The present work examines the effects of added nitrate, the level of which are 0,2,4,8 and 12mM, on the nodule formation and leaf nitrate utilization and on the possibility of inducing nitrate-toxicity to livestocks in two alfalfa varieties, ' Vernal ' of grazing type and ' Victoria ' of hay type. Higher level of exogeneous nitrate resulted in the increased above-ground dry weight. Nodulation was inhibited severely when more than 8mM NO$_3$ ̄ was supplied to alfalfa plants, and leaf nitrate reductase reached a maximunm at 4mM nitrate supply. The $V_{max}$of nitrate reductase in leaves of Vernal was similar to that of Victoria, whereas the $K_m$ of Vernal was higher than that of Victoria. High accumulation of leaf nitrate, $4{\times}10^{-5}$ g/g leaf fresh weight, was shown at 12mM nitrate supply, which was thought to be not enough to induce nitrate-toxicity to livestocks.icity to livestocks.

  • PDF

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Ruminal Behavior of Protein and Starch Free Organic Matter of Lupinus Albus and Vicia Faba in Dairy Cows

  • Yu, P.;Leury, B.J.;Egan, A.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.7
    • /
    • pp.974-981
    • /
    • 2002
  • Faba beans (vicia faba) (FB) and lupin seeds (Lupinus Albus) (LS) were dry roasted at three temperatures (110, 130, $150^{\circ}C$) for 15, 30 or 45 min to determine the effects of dry roasting on rumen degradation of crude protein and starch free organic matter ($^{PSF}OM$). Rumen degradation characteristics of $^{PSF}OM$ were determined by the nylon bag incubation technique in dairy cows fed 60% hay and 40% concentrate. Measured characteristics of $^{PSF}OM$ were undegradable fraction (U), degradable fraction (D), soluble fraction (S), lag time (T0), and the rate of degradation (Kd). Based on the measured characteristics, rumen availability ($RA^{PSF}OM$) and bypass $^{PSF}OM$ ($B^{PSF}OM$) were calculated. Dry roasting did not have a greater impact on rumen degradation characteristics of $^{PSF}OM$ (p>0.05). S varied from 32.1 (raw) to 30.0, 27.8, 30.8% (LS) and 15.4 (raw) to 14.4, 20.8, 20.9% (FB); D varied from 65.4 (raw) to 66.3, 66.9, 55.9% (LS) and 54.9 (raw) to 55.0, 51.0, 64.7% (FB); U varied from 2.6 (raw) to 7.3, 7.0, 7.7% (LS) and 29.7 (raw) to 30.6, 28.2, 14.4% (FB); Kd varied from 6.0 (raw) to 7.3, 7.0, 7.7% (LS) and 22.4 (raw) to 24.4, 21.1, 7.9% (FB); $B^{PSF}OM$ varied from 35.5 (raw) to 33.8, 36.6, 38.2% (LS) and 41.3 (raw) to 41.5, 39.7, 47.6% (FB) at 110, 130 and $150^{\circ}C$, respectively. Therefore dry roasting did not significantly affect $RA^{PSF}OM$, which were 353.7, 367.9, 349.6, 336.9 (g/kg DM) (LS) and 12.82, 127.0, 133.7, 117.1 (g/kg DM) (FB) at 110, 130 and $150^{\circ}C$, respectively. These results alone with our previously published reports indicate dry roasting had the differently affected pattern of rumen degradation characteristics of various components in LS and FB. It strongly increased bypass crude protein (BCP) and moderately increased starch (BST) with increasing temperature and time but least affected $^{PSF}OM$. Such desirable degradation patterns in dry roasted LS and FB might be beneficial to the high yielding cows which could use more dry roasted $^{PSF}OM$ as an energy source for microbial protein synthesized in the rumen and absorb more amino acids and glucose in the small intestine.

Effect of Collection Times of Rumen Fluid on In vitro Dry Matter Digestibility of Forage Crops (반추위액 채취 시간이 사료작물의 In vitro 건물 소화율에 미치는 영향)

  • Jo, Nam-Chul;Jung, Min-Woong;Kim, Meing-Jung;Lim, Young-Chul;Yook, Wan-Bang
    • Journal of Animal Environmental Science
    • /
    • v.15 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • Object of this study were to determine the influence of collection times of rumen fluid on in vitro dry matter digestibility (IVDMD) of forage crops. The donor cow was fed concentrate once a day and given free access to grass-legume mixture hay. Main plot was consisted of different collection time of rumen fluid; T1: 1 hour before concentrate feeding, T2: 1 hour after feeding, T3: 4 hour after feeding and T4: 8 hour after feeding. A total of 7 samples of 4 different forage crops (barely, Italian ryegrass, crimson clover, rye) were used for the estimation of IVDMD and tested in three replicates. For the $DAISY^{II}$ incubation, each sample was inserted into each filter bag then heat-sealed and incubated in a digestion vessel for 48 h at $39^{\circ}C$. The times of rumen fluid collection had no significant effect on the IVDMD values over all varieties except for 2 breeds of IRG (Kogreen and Kospeed). IVDMD values with T1 over all varieties were slightly higher than other treatments, however those with both T1 of Kogreen and Kospeed varieties were significantly higher than T2 (p<.05).

  • PDF